Changing climate: How it affects air travel in northern Canadian communities

Andrew C.W. Leung¹, William A. Gough¹, Tanzina Mohsin¹, Ken A. Butler² ¹Department of Physical & Environmental Sciences ²Department of Computer & Mathematical Sciences University of Toronto Scarborough

Why is air travel in the north important?

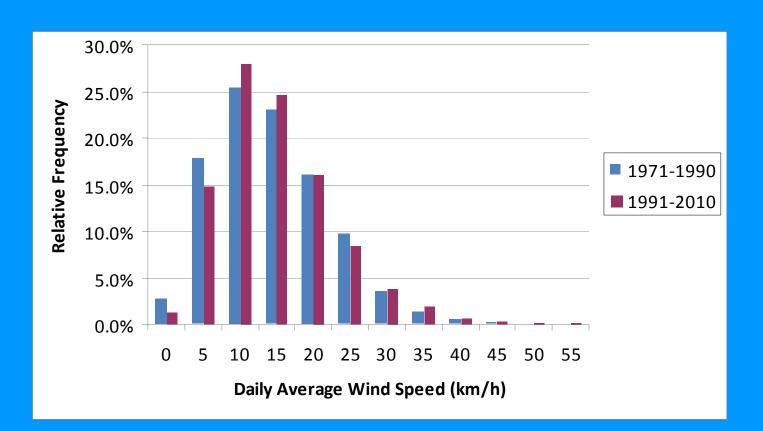
- Only year-round transportation and shipping in many northern Canadian communities
 - Some use sea-lift in summer or ice road in winter
- Issues:
 - Higher skill expectation from pilots
 - Higher performance demand on planes
 - Airports are far apart and many lack advance navigation or landing aids for low visibility
 - Few SAR experts to cover large area

Hypothesis

- 1. To examine if local historical wind patterns changed over time
- 2. To determine if there are seasonal variations at these locations
- 3. If these changes were observed, what are the impacts on air travel and airport operations

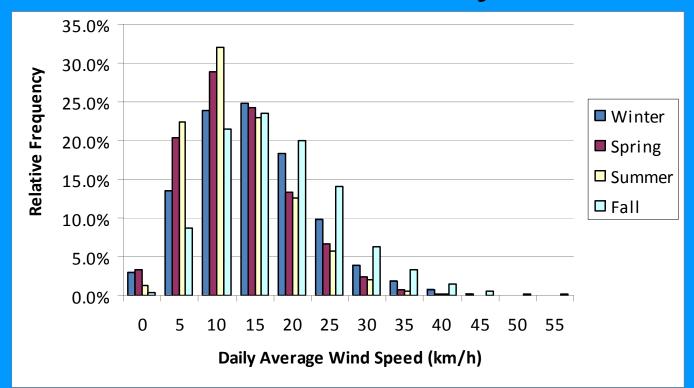
Methods

- Hourly wind speed and wind direction from 1971 to 2010 are obtained from Environment Canada's National Climate Archives
- Daily average wind speed and wind direction are calculated
 - Use R software's
 "circular" package for wind direction averaging



Methods

- Divide the data into two time series (1971-1990 & 1991-2010) and by four seasons
 - Winter: December to February
 - Spring: March to May
 - Summer: June to August
 - Fall: September to November


Wind speed

Location	Mean (1971- 1990)	Mean (1991- 2010)	T-value	Degrees of freedom	p-value
Baker Lake	21.42 km/h (11.57 knots)	21.37 km/h (11.54 knots)	0.2467	14435	0.805106
Inukjuak		21.01 km/h (11.34 knots)	-0.2880	14432	0.772591
Kuujjuarapik	16.79 km/h (9.07 knots)	17.31 km/h (9.35 knots)	-4.0144	14590	<0.0001

- Less calm wind
- More extremely windy days
- Sea ice has higher drag coefficient than open water

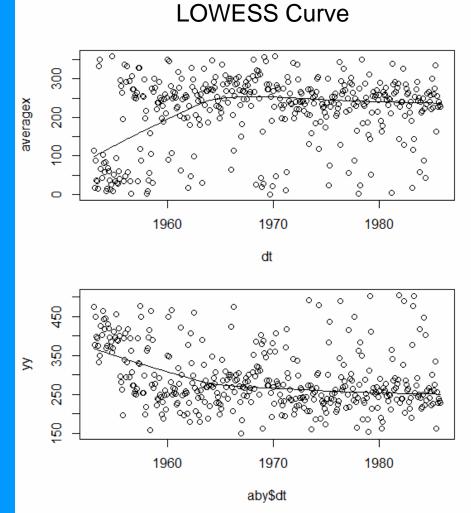
Seasonality

- Much less calm wind in summer & fall
 Ressibly due to enshere/offshere breeze
 - Possibly due to onshore/offshore breeze
- Fall dominates in categories >20km/h
- Wind tends to be slower in winter

Seasonality

Kuujjuarapik	Mean (1971- 1990)	Mean (1991- 2010)	T-value	Degrees of freedom	p-value
Winter (Dec to Feb)	17.33 km/h	17.82 km/h	-1.8316	3608	0.0671
Spring (Mar to May)	14.93 km/h	15.88 km/h	-4.1038	3678	<0.0001
Summer (Jun to Aug)	14.98 km/h	15.38 km/h	-1.8592	3678	0.0631
Fall (Sep to Nov)	20.81 km/h	20.20 km/h	1.8416	3638	0.0656

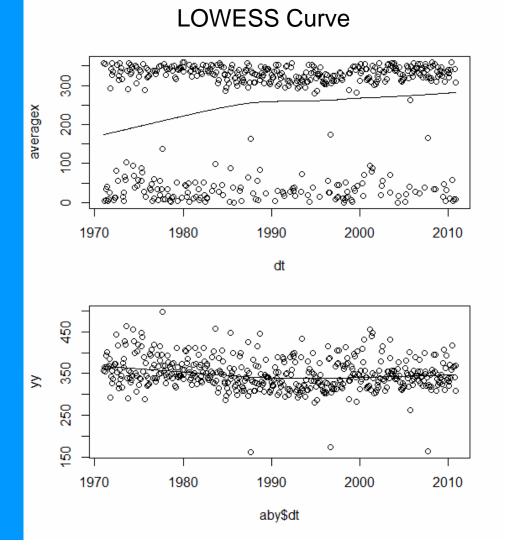
Other locations


Baker Lake	Mean (1971- 1990)	Mean (1991- 2010)	T-value	Degrees of freedom	p-value
Winter (Dec to Feb)	23.91 km/h	20.04 km/h	10.939	3585	<0.0001
Spring (Mar to May)	21.69 km/h	22.64 km/h	-2.6682	3590	0.00766
Summer (Jun to Aug)	18.34 km/h	22.07 km/h	-11.424	3631	<0.0001
Fall (Sep to Nov)	21.77 km/h	20.77 km/h	3.0111	3623	0.00262

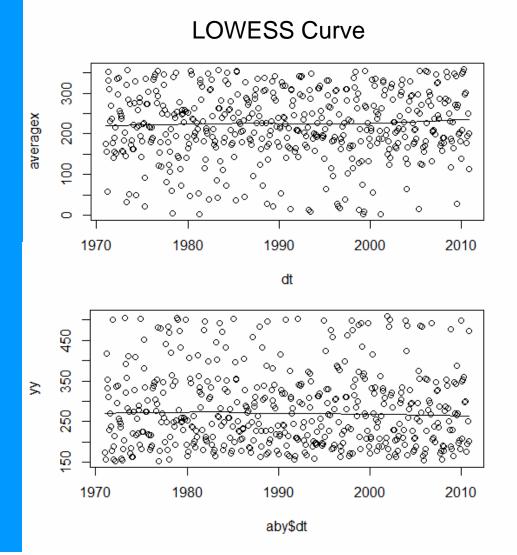
Other locations

Inukjuak	Mean (1971- 1990)	Mean (1991- 2010)	T-value	Degrees of freedom	p-value
Winter (Dec to Feb)	20.21 km/h	20.32 km/h	-0.3512	3582	0.72546
Spring (Mar to May)	20.30 km/h	21.18 km/h	-3.004	3590	0.00268
Summer (Jun to Aug)	20.83 km/h	19.99 km/h	2.4724	3631	0.01347
Fall (Sep to Nov)	22.52 km/h	22.52 km/h	0.0109	3623	0.99133

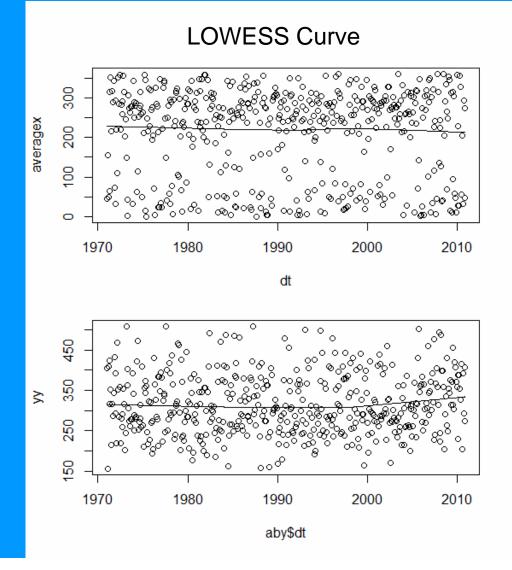
Nitchequon


- Testing if change in wind direction is significant with Mann Kendall test
 - tau = -0.205
 - $-p = 1.2494 \times 10^{-9}$ (significant)

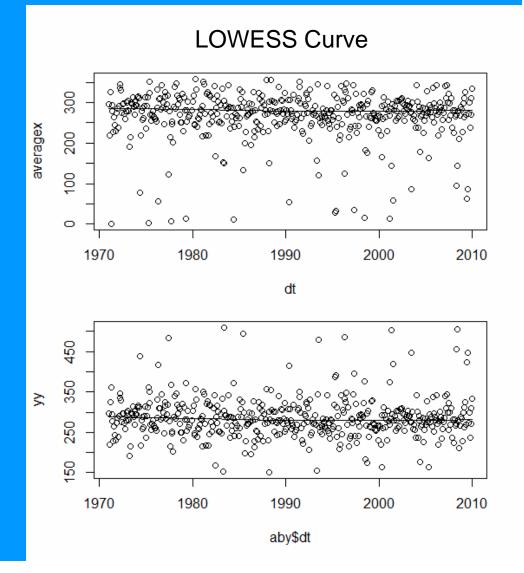
Baker Lake


- Mann Kendall
 - tau = -0.12
 - $-p = 8.2637 \times 10^{-5}$

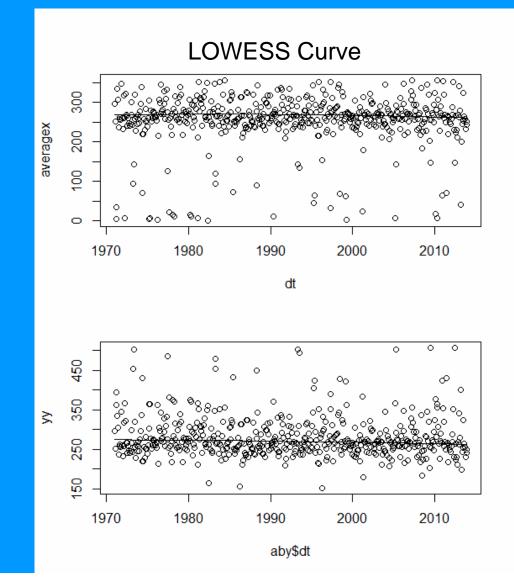
(significant)


Kuujjuarapik

- Mann Kendall
 - tau = -0.0174
 - -p = 0.56833


Inukjuak

- Mann Kendall
 - -tau = 0.0343
 - -p = 0.2627


Schefferville

- Mann Kendall
 - tau = -0.0262
 - -p = 0.39796

Wabush

- Mann Kendall
 - tau = -0.0484
 - -p = 0.10081

Impacts

- Longer ice-free season altered local wind patterns
- Planes must land into the wind if wind speed ≥10 knots
- Increases the chance of experiencing crosswind takeoff and landings
 - Elevate the risk of crashes
 - Case study: First Air Flight 6560

First Air Flight 6560

- August 2011
- Boeing 737 flying from Yellowknife to Resolute Bay
- Crashed into a hill during landing, killing 12 and 3 survived
- Final report indicated that wind change was one of the factor that contributed to the crash

Adapting and Mitigating the Risk

- "Do nothing" approach
 - Wait until weather conditions improve
- Build another runway that faces into the predominant wind direction
 - May be lacking flat land to build another runway
- Install navigation system to assist with landing
 - Both are financially infeasible
- Train pilots for better preparation

Conclusions

- Wind direction was significantly changing towards south-westerly wind in 2 locations
- Average wind speed at some locations (or seasons) are significantly increasing
- Focus on the average wind speed value, not on the statistical significance or the magnitude of change