Quantifying Street View Factors of High-Density Urban Environments for Climatic Studies Using Google Street View

Fang-Ying Gong (龚芳颖) ¹,² *

Collaborators:
Zhao-Cheng Zeng ³, Fan Zhang ⁴, Edward Ng ¹, Leslie Norford ²

¹School of Architecture, The Chinese University of Hong Kong (CUHK)
²Department of Architecture, Massachusetts Institute of Technology (MIT)
³Division of Geological and Planetary Sciences, California Institute of Technology (Caltech)
⁴Institute of Remote Sensing & Geographical Information System, Peking University (PKU)
Background

Fig. Examples of deep street canyons in the Mong Kok and Tsim Shi Tsui area in Hong Kong (Google, 2016)

- It’s difficult to quantify the street features (tree canopy, building overhangs, and shade structures) using model methods in complex street environments.

- An effective and accurate method for mapping the street features is crucial for studying its urban climate and assessing the relevant outdoor thermal comfort.
Question 1
How to use publicly accessible Google Street View images to estimate the view factors?
Question 1
How to use publicly accessible Google Street View images to estimate the view factors?

Question 2
What’s is the spatial patterns of the sky, tree, and building features of street canyons in high-density urban environments?
Question 1
How to use publicly accessible Google Street View images to estimate the view factors?

Question 2
What’s is the spatial patterns of the sky, tree, and building features of street canyons in high-density urban environments?

Question 3
What’s the differences of GSV-based and 3D-GIS-model estimate methods?
Question 1
How to use publicly accessible Google Street View images to estimate the view factors?

Question 2
What’s is the spatial patterns of the sky, tree, and building features of street canyons in high-density urban environments?

Question 3
What’s the differences of GSV-based and 3D-GIS-model estimate methods?

Research Objective
To develop an new approach for estimating and mapping sky, building, and tree features of street canyons in complex urban living environments.
Method | Study Area: Hong Kong

Fig. (a) Location of Hong Kong; (b) High-density urban areas of Hong Kong; (c) Building height density map.

- **High-rise compact building** blocks and **deep street canyons** with a high H/W ratio.
- Tall buildings of some **40-60 stories** with narrow streets.
Method | Data Collection: Google Street View (GSV)

- Google Street View serves millions of Google users daily with panorama images captured in hundreds of cities (Anguelov et al., 2010).

- All these panorama photographs are freely accessible on Google Maps by the Google Street View Application Program Interface (API).

Fig. Google Street View coverage map of Kowloon Area of Hong Kong ([Google, 2016](#)).
Method | View Factor Calculations using GSV images

<table>
<thead>
<tr>
<th>High-rise Area</th>
<th>Low-rise Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Panorama Image</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Features Extraction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Fisheye Image</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[SVF, TVF, BVF]</td>
<td>[0.34, 0.00, 0.65]</td>
</tr>
</tbody>
</table>

- Panorama images from Google Street View
- Features extraction using deep-learning framework. Sky (in blue), tree (in green) and building (in grey) are extracted using the scene parsing method in a deep-learning framework.
- Fisheye images obtained by projecting the panorama images
- Based on the classified fisheye image, view factors for sky (SVF), tree (TVF), and building (BVF) are calculated using the classical photographic method.

Fig. Workflow procedure for calculation of view factors using Google Street View images
Method | Semantic Scene Parsing using PSPNet

Fig. Workflow of semantic scene parsing using Pyramid Scene Parsing Network (PSPNet).

➢ For a given input street view image in (a),
➢ the network extracts the feature map in (b),
➢ the pyramid parsing module is applied to form the final feature representation of the streetscape in (c).
➢ The pixel-wise classified output street view image with semantic categories in (d).

This assessment is implemented by using **100 randomly street points** (cover low-to-high building densities);

Comparing their calculated SVF, TVF, and BVF from sky, tree, and building features extracted using:

(1) Scene parsing deep learning technique;
(2) Manual delineation by eye inspection (as reference data).

Fig. Accuracy assessment of feature extraction using the PSPNet in a deep-learning framework.
Results | Tree View Factor (TVF)

Fig. Mapping of Tree View Factor (TVF) estimates of street canyons derived using 29,264 Google Street View images along the streets at 30-meter intervals;

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Kowloon Area</th>
<th>HK Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVF</td>
<td>0.49</td>
<td>0.53</td>
<td>0.41</td>
</tr>
<tr>
<td>TVF</td>
<td>0.14</td>
<td>0.12</td>
<td>0.19</td>
</tr>
</tbody>
</table>

- The TVF is dominated by values **less than 0.1**, which is limited by the high building density and narrow street environment.
- **58%** of the study area, are dominated by low TVF (0.0–0.3), because of the high-density construction and narrow streets that limit space for greenery.
Results | Building View Factor (BVF)

Fig. Mapping of Building View Factor (BVF) estimates of street canyons derived using 29,264 Google Street View images along the streets at 30-meter intervals;

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Kowloon Area</th>
<th>HK Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVF</td>
<td>0.49</td>
<td>0.53</td>
<td>0.41</td>
</tr>
<tr>
<td>BVF</td>
<td>0.33</td>
<td>0.31</td>
<td>0.36</td>
</tr>
</tbody>
</table>

- The coastline regions and low-rise areas, which cover about 20% of the study area, show much higher SVF (0.7–1.0), and lower BVF (0.0–0.3),
Results | Sky View Factor (SVF)

• The spatial patterns of GSV-based SVF estimates are similar and consistent with the corresponding building height and density in build-up areas.

• Areas with higher building density have higher BVF, lower SVF and TVF.

• Areas with higher tree canopy have higher TVF, lower SVF and BVF.

Fig. Mapping of GSV-based Sky View Factor (SVF) estimates of street canyons derived using 29,264 GSV images along the streets at 30-meter intervals;
The map of 3D-GIS-based SVF shows a similar pattern to that of GSV-based SVF estimates. They are correlated ($R^2 = 0.40$) and have a better agreement in high-building-density areas. The mean SVF value of 3D-GIS-based estimates (0.59) is about 0.11 (about 20%) higher than that of GSV-based estimates (0.49). There are large differences in the low-rise areas with large amount of street trees.
Fig. Examples of fisheye images from high-rise and low-rise street sample points from field surveys and Google Street View.

Reference data by fisheye photography from field surveys.

The sampling reference data include 20 in high-rise area and 20 in low-rise area.
Results | Verification of GSV-based View Factor Estimates

Fig. 1. Validation of TVF estimates in high and low-density areas using fisheye photography

Fig. 2. Validation of BVF estimates in high and low-density areas using fisheye photography

➢ GSV-based estimations is the effectiveness and high accuracy method to quantify the tree canopy and building density.
Results | Verification of GSV-based View Factor Estimates

- Scatter plot of SVF data from field survey and the corresponding GSV-based (in blue) and 3D-GIS-based (in red) SVF data.
- The sampling SVF data include 20 samples in Mong Kok within high-rise building area (in triangles), and 20 samples in Kowloon Tong within low-rise area (in circles).

Fig. Validation of SVF estimates in high and low-density areas using hemispheric photography

- Two SVF estimates have a better agreement in high-building-density areas;
- 3D-GIS SVF method overestimates as for not considering tree canopy.
Results | Difference between 3D-GIS and GSV-based SVF

Impact of Tree View Factor

![Histogram](image1)

Fig. 1. The bivariate histogram of GSV-based TVF estimates and difference between 3D GIS-based and GSV-based SVF

- The higher of the amount of street trees, the larger of the uncertainty of model simulation of SVF.

Impact of Building View Factor

![Histogram](image2)

Fig. 2. The bivariate histogram of GSV-based BVF estimates and difference between 3D GIS-based and GSV-based SVF

- The higher of the building density, the smaller of the uncertainty of model simulation of SVF.
Results | Tree View Factor (TVF) - Singapore

Fig. (a) Spatial distribution of Tree View Factor (TVF) estimates in Singapore; (b) Selected area in central Singapore.

➢ This mean Tree View Factor (TVF) of Hong Kong (0.14) is smaller compared with Singapore (0.26), a sub-tropical Asian city with high building and population densities.
Conclusions and Discussions

- The mean SVF, TVF, and BVF values in high-density areas of Hong Kong are 0.49, 0.14, and 0.33, respectively.

- A comparison between GSV-based and 3D-GIS-based SVFs show that the two SVF estimates are correlated ($R^2=0.40$) and have a better agreement in high-building-density areas. However, the 3D-GIS-based method overestimates SVF by 0.11 on average.

- The differences between the two methods are significantly correlated with street trees ($R^2=0.53$). The more street trees, the larger the difference. Street trees should be considered in model simulation of urban environment.

- Street tree canopy maps in Hong Kong areas are generated. The mean TVF values in the high-density areas of Hong Kong is 0.14. which is smaller compared with Singapore (0.26).

Thank you for your attention.

Fang-Ying Gong (龚芳颖)

E-mail: fangying@link.cuhk.edu.hk; (F.-Y. Gong)

Acknowledgment:
The study is supported by the Postgraduate Scholarship (PGS) and Global Scholarship Programme for Research Excellence form The Chinese University of Hong Kong. The authors also thanks to the supporting of the Hong Kong Research Grants Council General Research Fund [Grant number 14610717 and 14629516].