Handout (89.1 kB)
Using this model, new formulations for heterogeneous ice nucleation are being tested. For deposition mode, the nucleation rate is formulated so as to depend on the size of insoluble particle and its surface area partially covered by solution, as well as the super-saturation for ice. For immersion freezing mode, the effect of insoluble particle size is introduced in addition to the temperature dependency so that the probability of active site occurrence on the surface of ice nucleus can be formulated. In the numerical simulation for a test, larger ice nuclei (insoluble particles) initiate ice particles faster through the deposition mode, and enhance the nucleation through the immersion freezing mode. Finally, consumption of water vapor becomes larger in the case of larger ice nuclei. As a result, it is revealed that the size of ice nucleus affects the timing of ice initiation, number concentrations of ice particles, and the amount of water vapor.
We plan to further improve the numerical model through a comparison with the experimental results from the cloud simulation chamber which has been developed by Meteorological Research Institute, Tsukuba, Japan, to simulate cloud processes in adiabatically ascending air parcel.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner