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Motivation: results from Duda and Turner (2021, 2023)
 HRRRv3 vs. HRRRv4 in object-based space

• Field: composite reflectivity
• Sample: every 3-h forecasts from Aug/Sep 2019 

and Apr-Sep 2020
• Both HRRRv3 (operational) and HRRRv4 (parallel, 

code frozen) running at the same time
• 1300+ cases, O[100,000] objects per forecast hour

• Some distinction between v3 and v4 in OTS (and 
other metrics), but classical bootstrap testing 
revealed no statistically significant differences

is this difference 

significant?

Not from the 

standpoint of 

classical 

bootstrap 

sampling.

But what about 

due to MODE 

configuration?

PROBLEM: Would we get the same 
or even similar results if we tried a 
different configuration of MODE?



MODE process 

Step 1:

Field 

convolution

Really just a circular average filter…

Convolution radius of 1 grid square 
used; minimal smoothing



Step 2 – identify objects and calculate attributes

𝜽, Axis (orientation) angle

Aspect ratio = width/length

Reflectivity object after convolution step

Classified object from 
contiguous points  

exceeding convolved field 
threshold

(25 dBZ used throughout, 
WLOG)

Object complexity = (A-aO)/Aarea inside object, aO

Total area of 
convex hull, A

Convex hull

Also not shown: (radius of) curvature
Computed from higher-order moments of field

Not shown: quantiles of field 
within object (95th percentile used 
throughout; near-max reflectivity)



Step 3 – calculate attribute comparisons for object pairs

index attribute name description Range

0 centroid distance distance between object centroids [0,∞) [km]

1 boundary distance Closest that object boundaries come to each other [0,∞) [km]

2 convex hull distance same as boundary distance, except using convex hull boundary [0,∞) [km]

3 angle difference Difference in orientation angle of objects [0°,90°]

4 aspect ratio difference Difference between object aspect ratios [0.0,1.0]

5 area ratio Ratio of object areas* [0.0,1.0]

6 consumption ratio Fraction of smaller object encompassed by larger object [0.0,1.0]

7 curvature ratio ratio of object curvatures [0.0,1.0]

8 complexity ratio ratio of object complexities [0.0,1.0]

9 intensity percentile ratio 
(pXX ratio)

ratio of pXX value of object* (95th percentile used for composite 
reflectivity)

[0.0,1.0]

*MODE forces this ratio to be ∈ [0,1], and will invert the ratio to enforce 
this range, but computations herein did not use this formulation.



Step 4 – compute object pair interest

• Key output: object pair total interest (for F-O object pair p)

𝐼𝑝 =
σ𝑘=1

10 𝐶𝑘 ∗ 𝑤𝑘 ∗ 𝑖𝑘
𝑝

σ𝑘=1
10 𝐶𝑘 ∗ 𝑤𝑘

• Problem: optimal values to use for these settings not established, and likely 
dependent on individual user’s application, so what values do we pick?
• Short and straightforward solution: tuning

• Problem: values would need to be tuned for every variable in the verification, including field and cases

• Present objective: identify robustness of interest values (and metrics derived 
from it) to modifications of attribute weight sets (w) and interest maps (i)

C Confidence (robustness of attribute comparison value)
Disregarded in this investigation, and most values are 1.0 anyway 

i single-attribute interest
Maps actual attribute difference to normalized range [0.0,1.0]

w attribute weight – importance of a given attribute

(summing index k represents 
the 10 attribute comparisons)



Experiment setup

• Attribute weights: 𝑊𝑛 = 𝑤𝑛,0, 𝑤𝑛,1, 𝑤𝑛,2, ⋯ , 𝑤𝑛,9  ∀𝑛 ∈ # 𝑜𝑓 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 
• Sample randomly from uniform distribution in range [0.1,5.0] (strictly 2 sig figs)

• 200 random realizations (for most tests)

• Preliminary tests revealed two guiding principles:
1. Maximum weight value not very important

2. More extreme behavior when attribute weights set to 0.0

• Main test: “support” experiments
• Nomenclature: support_N, for N in [2,10] indicating the count of attributes allowed to be 

nonzero (the particular attribute weights set to 0.0 allowed to vary randomly)

• Additional experiment: support_fixed, a subset of support_6, fixes the attributes to be 0.0 to 
the same attributes used to verify HRRRv3/v4 in Duda and Turner (2021; 2023)

• Cases from June-August 2020 every 3 hours
• O(10000) objects and 600 cases for each forecast hour (halved after f18)



Example of  support experiments
Name/
attribute

centroid 
distance

boundary 
distance

convex hull 
distance

angle 
difference

aspect ratio 
difference

area ratio consumption 
ratio

curvature 
ratio

complexity 
ratio

pXX ratio

support_1 0. 0. 0. 0. 2.7 0. 0. 0. 0. 0.

support_2 0. 0. 4.9 0. 0. 0. 0. 0. 0. 1.2

support_3 5.5 3.1 0. 0. 0. 4.6 0. 0. 0. 0.

support_4 0. 1.0 0. 0. 0. 0. 1.1 2.7 2.5 0.

support_5 0. 0. 0. 1.9 3.3 1.4 0. 0. 0.7 4.8

support_6 0.2 0.8 4.1 2.5 0. 0. 4.3 3.5 0. 0.

support_7 0. 2.0 5.0 3.9 1.8 0. 0.6 1.6 3.2 0.

support_8 1.5 4.6 1.1 0. 3.6 2.6 2.7 0. 4.9 0.1

support_9 3.9 0. 2.7 3.6 4.1 1.2 2.3 4.4 3.5 1.0

support_10 3.3 3.9 1.1 0.6 4.7 2.2 5.0 1.1 1.2 3.5

support_fixed 4.3 3.7 0. 0. 0. 0.4 1.8 0. 1.3 0.6

HRRR* 5.0 4.0 0. 0. 0. 4.0 2.0 0. 0.5 3.5

*Values used in Duda and Turner (2021), WAF and Duda and Turner (2023), in review

Number of distinct sets 
possible for support_N = 

10CN*50N

Examples:
N=2 → 112500
N=5 → 7.875 x 1010

N=10 → ~9.8 x 1016



But wait! Wouldn’t it help to have a baseline?
Well…yes!

• What would serve as a baseline, though?
• Equal weighting

• Baseline: equal-cN experiments
• 10 attributes – 10th row of Pascal’s triangle gives the number of possible combinations for 

each comparable N from the support experiments:

• All combinations used for each N

• WLOG, each weight value was set to 1.0

• On second thought, shouldn’t there be a baseline for the interest maps, too?
• Answer: yes, and “equal interest maps” were created, too.

N 0 1 2 3 4 5 6 7 8 9 10

10CN 1 10 45 120 210 252 210 120 45 10 1



Baseline via OTS using ”equal interest maps” and 
equal weighting
-Median OTS tends to decrease with increasing cN, as does range/variability

10 samples from equal-c5
(light shading represents range among all sets)

This is substantial variability considering weight value is fixed, only nonzero attributes impacted!

𝑂𝑇𝑆 =
1

𝐴𝑓 + 𝐴𝑜


𝑝

𝐼𝑝 𝑎𝑓
𝑝

+ 𝑎𝑜
𝑝

● Af, Ao – total area 
of F/O objects
● af

p, ao
p – area of 

pth pair F/O object
● Ip – interest of pth 
object pair

● OTS ϵ [0,1]:

0.0: no meaningful 
correspondence
1.0: effectively 
perfect



How does incorporating the attribute value 
variability modify the OTS diversity?

Support_N tests

flashing between 
equal-cN and 

support_N tests

It almost doesn’t seem to matter if you use equal weighting or random weighting!



Which attribute weight vector gave the best score?

• Large values of distance-related attribute 
weights

• Large value of either complexity ratio or 
curvature ratio (or both)

• Following attributes resulted in best OTS when 
reduced or zeroed out:
• angle diff

• aspect ratio diff*

• area ratio*

• consumption ratio

• Complicating factors:
• Which attributes were overall better forecast?

• Which vector resulted in second best OTS? (sensitivity)

*High weights for these attributes 
tended to result in the lowest OTSs.



Duda and Turner (2021) used a ”stricter” interest 
map for verifying HRRRv3. What difference does 
the interest map make?

The impact of a stricter set of interest maps manifests as overall lower OTSs in most 
experiments, but the impact is larger for higher numbers of nonzero attribute interest 
weights (both equal-CN and support_N)

support_N

equal-cN



What about testing all sorts of  interest maps?

• How does one settle on such an 
arbitrary choice?
• One solution: test a variety of maps

• Three functional forms tested:
• linear

• exponential decay

• cosine-squared

• Optional flat spot at 1.0 for “good 
enough (for perfect)” region of 
attribute comparison value

• Interest forced to reach 0.0 within 
some reasonable range (i.e., “not 
good enough”)



Apply this to all attribute comparisons

• Variability between many test-base 
pairs larger than variability between 
interest map varieties
• But, some central tendency noted

• OTS values overall lower than those 
using fixed equal or strict interest 
maps



General findings

• Magnitude of attribute weight means less than whether attribute weight is 
nonzero or not

• Using varied weights not much different than using equal weighting

• More nonzero weights tend to shrink the uncertainty

• Ultimately, however, the particular attribute weight and interest map 
configuration will be different for each MODE user, so nearly all possible 
configuration settings are scientifically legitimate

• So…which set of weights should you use? ¯\_(ツ)_/¯ (Choose your own adventure)



So what?

• This testing reveals substantial variability in object-based metrics that depend on 
the object pair interest value (including, OTS, MMI, generalized metrics presented 
in Duda and Turner 2023)

• Renders the object-based verification process less certain/less robust to arbitrary 
decisions made by verification suite designers
• Especially applies to metrics that can be used as direct comparisons to observations/forecast 

accuracy

• It offers a different means of statistical significance testing, though

• HRRRv3 vs HRRRv4 differences well within range of values obtained from using 
reasonable and random sets of attribute weights and maps, so changing the 
MODE configuration could result in substantially different results 

BUT
If the same set of interest weights and interest maps are used, then comparisons 

between different forecast systems are likely still meaningful
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