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The deficiency in predictability at subseasonal timescales relative to that at 
conventional weather prediction timescales is significant. With respect to severe 
weather over the United States, previous work has shown promise for prediction at 
longer timescales through consideration of various teleconnections. For example, 
tropical modes of variability like the Madden Julian Oscillation have been shown to 
modulate severe weather frequency in the weeks following specific phases. Also tied 
to the occurrence of severe weather are synoptic features like the jet stream, deep 
upper-level troughs, and tropopause polar vortices. However, many of these 
processes and teleconnections have been exclusively investigated in the context of 
severe weather outbreaks over the United States without consideration of 
interference between them.  

This material is based upon work supported by the National Science Foundation under Grant No. ICER-2019758.
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1. A CNN was trained on large-scale predictors including 250 hPa zonal wind, 500 hPa 
geopotential height, 850 hPa temperature, and tropical outgoing longwave radiation to 
predict probabilities for severe weather hazards over 3 different regions of the U.S.

2. Current CNN needs improvement 
1. CNN performs best for central and eastern U.S. hail probabilities.
2. Worst performance noted over western U.S. 

3. Ongoing work includes adding predictors 
1. Indices for Madden Julian Oscillation, El Niño–Southern Oscillation, Arctic 

Oscillation, etc.
2. Tropopause polar vortices • ML models are often seen as a ‘black-box’. 

• XAI is a way to interpret the model 
with respect to the decisions 
made

• Utilize various XAI methods to investigate 
most important features in the inputs for best 
forecasts of medium range severe weather 
hazards

• 𝐿𝑅𝑃!"#$ : Uses layerwise 
backpropagation to determine the 
relevance of each input neuron to 
the output 

• Deep SHAP: Calculates Shapley 
values for small components of 
network and backpropagates to 
input layer

Nov-May 1983-2019
ECMWF Reanalysis v5 (ERA5)

• Daily 500 hPa geopotential height anomalies
• Daily 250 hPa zonal wind anomalies
• Daily 850 hPa temperature anomalies 

Climate Data Record (CDR) 
• Daily outgoing longwave radiation (OLR) 

anomalies
Practically Perfect Hindcasts (PPH)

• Daily tornado, hail, and wind probabilities

Fig. 2: (left) example of  tornado PPH data. (right) Fig. 4 from Hill et al. (2023) showing the 
division of the three U.S .regions for the PPH data

Fig. 5: CNN architecture with 2 input channels (OLR and ERA-5 data), and an output layer with 9 channels (tornado, 
wind, and hail for 3 U.S. regions)  

Explainable AI (XAI)

Objective: 
Use machine learning to improve and better understand 

subseasonal predictability of severe weather over the U.S..

PPH Details:
• PPH data (tornado, 

hail, wind 
probabilities) divided 
into 3 U.S. regions 
based on Hill et al. 
(2023)

• Averaged over 3 
regions 

Model Performance

• We utilize a convolutional neural network 
• Hyperparameter searching is run with hundreds of combinations of varying 

parameters such at depth, kernel size, learning rate, etc. 
• Regression CNN performed better than classification CNN
• Loss function : Mean Squared Error  
• Training/Validation/Loss is an 80/10/10 split 

• CNN needs improvement
• Training loss vs validation loss (Fig. 7) exhibit 

large gap suggesting an unrepresentative 
training dataset

• CNN performs better for hail than tornado or 
wind. 

• CNN performs best over central U.S. and worst 
over western U.S. 

Fig. 3: Distribution of severe weather hazards over the central U.S. region for (top) all 
samples and (bottom) all nonzero samples.  

Fig. 4: From Fig. 3. of Chase et al. (2023). Schematic of a convolutional neural network on radar reflectivity at various 
steps. Original hook echo radar reflectivity is depicted in top left before the (top) step 0 convolution and (bottom) step 6 
convolution. Final hook echo radar reflectivity is depicted in top right after full convolution. 

Fig. 1: Example of normalized daily input data for the ML model. 

Data

Fig. 6: Test set evaluation of CNN prediction. (Top) Western U.S. (middle) 
central U.S. and (bottom) eastern U.S.

Fig. 7: Various metrics of CNN 
performance over epoch number. 

Fig. 8: GradientExplainer using SHAP from 
https://github.com/shap/shap


