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1. Introduction 
Hurricane Florence (2018) was a powerful 

and long-lived hurricane that caused extensive 
damage in the Carolinas in September 2018, 
primarily as a result of both freshwater and 
saltwater flooding. Florence originated from a 
strong tropical wave that emerged off the west 
coast of Africa on August 30th. The wave 
steadily organized and strengthened into a 
tropical depression on the next day, then 
acquired tropical storm strength on September 
1st. As it moved north-westward, Florence 
intensified rapidly on September 4–5, reaching 
Category 4. Then it weakened rapidly to tropical 
storm on September 7. Florence re-intensified to 
hurricane strength on September 9 and major 
hurricane status by the following day. It reached 
its peak intensity on September 11, when the 
east coast received warnings from NHC 
(National Hurricane Center). Then it weakened 
to Category 1 on September 13, turned 
southward, and made the landfall the next day 
near Wilmington, North Carolina. Two days later 
it resumed northward then north-eastward 
direction, dissipated, and quickly went back to 
sea on September 18.  

As shown in Fig. 1, over the sea, Florence 
track looks mostly straight in northwestward, 
with a slight northward deflection on September 
6—10. Starting on September 13, Florence 
stalled for two and a half days while turning 
southward and making landfall in North Carolina 
as a weakened Category 1 hurricane. However, 
this Category 1 storm created storm damage 
equivalent to a Category 5 hurricane. At its peak 
just before landfall, the 500-mile-wide storm had 
an area of tropical storm force winds that was 
300 miles wide (Armstrong, 2018). The 
combination of strong winds, size and slow   
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speed prompted a wide-spread storm surge of 
record high (9 to 13 feet) across eastern North 
Carolina (Stewart and Berg, 2019). Many places 
received record-breaking rainfall, with more than 
30 inches (760 mm) measured in some places 
(Fig. 2). As the ninth most-destructive hurricane 
to hit United States, the storm caused a total of 
54 deaths, property damage and economic 
losses of $24.23 billion, with $24 billion in 
damages in the Carolinas alone (Tanz et al., 
2019).  

Strong storms such as tropical cyclones 
often cause flooding hazards in coastal areas 
due to a combination of storm surge, gusty 
winds, and precipitation. Accurate predictions 
are critical for effective disaster mitigation. While 
advanced storm surge / flood modeling systems 
have been developed, they are heavily 
dependent on the accuracy of the tropical 
cyclone (TC) prediction (Li and Nie, 2017).  
Especially challenging is predicting instances 
when abrupt variations occur in TC track and 
intensity.  

This study focuses on the accurate 
prediction of track and intensity near landfalling. 
For the forecasting errors, we refer to the data in 
NHC for the annual average error in Fig. 3 for 
the track and Fig. 4 for the intensity. In 2018, the 
track error is about 33 nautical miles for 24 
hours, and the intensity error is about 7 knots for 
24 hours. We are using these as references to 
evaluate our ensemble models’ performance. 
Our goal is to improve these predictions by 
combining deterministic NWP (Numerical 
Weather Prediction) and statistical models.   

2. NWP Experiments 
2.1 WRF simulations 

The WRF-ARW (Weather Research and 
Forecast, Advanced Research WRF, denoted as 
WRF) is a state-of-the-art atmospheric modeling 
system designed for both meteorological 
research and weather prediction. It offers a host 
of options for atmospheric processes and can 



run on a variety of computing platforms 
(Skamarock et al., 2019). WRF excels in a broad 
range of applications across scales ranging from 
tens of meters to thousands of kilometers, 
including meteorological studies, real-time NWP, 
idealized simulations, data assimilation, earth 
system model coupling, and model training and 
educational support. In studying this hurricane, 
we utilized WRF v4.4 and conducted numerous 
simulations (Liu, 2020). The varied configuration 
options include the domain size, resolution, 
microphysics scheme, boundary layer model, 
cumulus parameterization, sea surface 
temperature updating, and pressure top. The 
starting time varied from September 10 to 11.  
The model initialization and boundary data are 
ERA-Interim and ERA5 (https://www.ecmwf.int 
/en/forecasts/dataset/ecmwf-reanalysis-interim, 
or https://rda.ucar.edu/datasets/ds627.0). Both 
are from the European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis.  

The WRF simulated results are compared 
with the observation data (best track data) from 
HURDAT2 (https://www.aoml.noaa.gov/hrd/ 
hurdat/hurdat2.html) for the track and intensity. 
Our study (Liu, 2020) reveals that the WRF 
tracks are sensitive to the simulation domain 
with slight improvement from the frequent SST 
updating and deep high pressure-top. Overall, 
the WRF results match reasonably well with the 
observation data after two days’ simulation, 
although some error persists. Figure 5 shows 
the track results of some simulation cases. In 
Fig. 5, we can see two sets of tracks: one with a 
huge southward turning over the sea and made 
landfall in South Carolina; the other matches 
better with the observation, but still with big 
errors at the southward turning near the landfall.  

2.2 HWRF simulations 

The HWRF (Hurricane WRF) model is a 
specialized version of the WRF and is the 
operational backbone for hurricane track and 
intensity forecasts by NHC. The HWRF system 
includes the WRF model software infrastructure, 
the NMM-E (Non-Hydrostatic Mesoscale Model 
on the E Grid) dynamic core, the MPIPOM-TC 
(Message Passing Interface Princeton Ocean 
Model-Tropical Cyclone), and the NCEP 
(National Centers for Environmental Prediction) 
coupler (Tallapragada et al. 2014). Studies show 
accurate predictions from HWRF for the track 

and intensity of hurricanes. The HWRF package 
v4.0 is well wrapped in Python scripts and the 
components are tightly streamlined with optimal 
schemes (Biswas et al., 2018). The initialization 
and boundary data are the GFS (Global 
Forecast System) forecasting data (https://rda. 
ucar.edu/datasets/ds084.1/).  

The HWRF simulations were set on a parent 
domain covering 80° x 80° with two moving nest 
domains (24° x 24° and 7° x 7°) on a rotated 
latitude/longitude E-staggered grid. The center 
of the stationary parent domain was at the 
location of the initial storm, and the nest 
domains moved along with the storm using a 
two-way interactive nesting. The resolutions 
were set at 0.099° (about 11km), 0.033° (about 
3.67km) and 0.011° (about 1.22km). We used 
10 hPa for model top and 75 for vertical levels. 
The other schemes included SASAS (Scale-
Aware Simplified Arakawa-Schubert) for 
cumulus parameterization, Ferrier-Aligo package 
for microphysics, GFS eddy-diffusivity mass flux 
scheme for planetary boundary layer, Monin-
Obukhov scheme for surface flux, and RRTMG 
(Rapid Radiative Transfer Model for General 
Circulation Models) for radiation effects.  

In HWRF simulations, we mainly varied the 
starting times (Liu, 2022). The individual tracks 
in comparison with the observation data were 
plotted in Fig. 6 for starting times on 09/10 and 
09/11, and in Fig. 7 for starting times on 09/12 
and 09/13. It can be seen from these two figures 
that in general the closer the starting time is to 
the landfall time the better the simulation result 
is. The tracks from the cases with starting times 
on 09/10 are all straight in northwest direction, 
while one day later (09/11) the tracks start to 
deflect toward north before the landfall, which 
can be seen clearly in case 9/11_18Z in Fig. 6. 
The cases starting on 09/12 showed clear 
southward then northward turning after the 
landfall. In Fig. 7, the cases starting late 09/12 
start to curve/turn north before the landfall, while 
the cases starting on 09/13 show clear curving 
and turning northward before the landfall and 
southward after the landfall, matching very well 
with the observation track.  

The intensity results (not shown here) are 
consistent with the track results. The maximum 
winds from the cases with early starting times on 
09/10 and 09/11 show large discrepancies, while 
the later starting times on 09/12 and 09/13 show 



small errors with the simulation results varying 
around the observation values up and down. 
Overall, the case with starting time 09/13_00Z, 
which is 36 hours before the landfall time, 
provides the best results in track and intensity 
near the landfall.   

2.3 Error analysis 

To better evaluate the performance of the 
simulation cases, we calculated the storm center 
errors (in distance) for the tracks (Fig. 8) and the 
errors of the maximum winds (Fig. 9) for 
intensity. Around landfall at 9/14_12Z, both 
cases with starting times at 9/13_00Z and 
9/14_00Z have the error of 30km. A simple 
average of these two may result in a better case 
with a distance error 17km at the landfall. In 
general, on average the location distance error 
within 24 hours is 44km. The intensity error in 
Fig. 9 also shows the best two cases of 9/13 and 
9/14 with small errors of 2 and 3 knots. On 
average the intensity error is 8 knots within 24 
hours.   

3. Methodology  

3.1 Data collection 

In this study, we retrieved and obtained data 
for Florence 2018 from various NWP models: 
WRF (one case), HWRF (one case), GFS 
(forecast data), ECMWF (ERA-Interim, ERA5). 
The GFS forecast, ERA-Interim and ERA5 are 
downloaded from the RDA website. The initial 
time for these data is 09/11_00Z. These data 
from different NWP models are used in our 
statistical model-based ensemble method to 
improve the accuracy of prediction, especially 
for track and intensity. A simple analysis of 
these data on track and intensity is shown in Fig. 
10.  

Overall, the track data from NWP models 
match well with the observation to some extent. 
Some discrepancies occur at the beginning in 
the WRF and ERA-Interim data. The big 
discrepancies occurred at the turnings before 
and after the landfall. As shown in Fig. 10a, the 
GFS forecast track stalled at the coast and 
never made landfall, the HWRF track went 
straight northwest and made the landfall 12 
hours early, the WRF track followed well with the 
observation until half day after the landfall 
turning northward early. Relatively, the ERA-

Interim and ERA5 tracks matched well with the 
observation in Fig. 10a.  

The intensity in Figs. 10b & 10c, however, 
showed large discrepancies. In Fig. 10b for the 
maximum winds, the worst case was ERA-
Interim which remained 20-30m/s the whole 
time, the winds in ERA5 were about 10m/s 
higher than the ERA-Interim. Both ECMWF data 
sets never picked up the hurricane strength. The 
GFS were about 60m/s till 6 hours after the 
landfall when the GFS wind started to match 
with the observation and decreased following 
the observation. The WRF simulation data 
started with 60m/s and picked up the hurricane 
strength in about two days, over predicted with 
higher values before the landfall, then 
decreased along with the observation but 
remained above after the landfall. The HWRF 
simulation provided the best matching values for 
the hurricane intensity. With the largest error as 
30m/s at the landfall, the HWRF data followed 
the observation in the entire simulation time. In 
Fig. 10c for the minimum MSLP, the worst case 
is again ERA-Interim with the highest values 
above the observation. The values from GFS 
forecast and WRF were comparable to each 
other and did not match with the observation 
until almost one day after the landfall. Unlike the 
wind result, the ERA5 pressure values were 
lower/better than the GFS/WRF/ERA-Interim 
data. The best pressure data was from HWRF, 
starting with almost the same value 945mb, and 
remaining within 10mb error in the whole 
simulation time.  

From the above analysis, the WRF and 
HWRF simulations with starting time 9/11 have 
large errors for the prediction of landfall location 
but their intensity match with the observation 
data with little errors. The ERA-Interim and 
ERA5 match well on track with small error but 
have large errors on intensity. With large 
variation and discrepancies, this is a good set of 
data to test the regression-based ensemble 
techniques.  

3.2 Statistical modeling 

The main steps of the regression-based 
ensemble technique are: first interpolate the 
data, then separate the data into training set and 
testing or forecasting set, use the training set to 
build the regression model, test or forecast using 
the testing set, and lastly revise the regression 



model(s) accordingly. In regression models, the 
usual sampling size is about 1000 data points 
(James et al. 2021). However, the 6-hourly 
observation data has only 4 data points for one 
day. The other data sets could be 3-hourly and 
hourly, which are still not enough. Interpolating 
the data into smaller time intervals (i.e., 3 mins) 
helps with the consistent time stamps for the 
data points and provides sufficient sampling size 
for regression model training. The goal is to 
predict landfalling, the location and the intensity. 
The earlier times data are used to train the 
regression model. Thus, we separate the data 
into training set covering 9/11_00Z to 9/14_00Z 
and testing set for the rest for 9/14_00Z to 
9/15_00Z. We use the training set to train the 
model, then use the model to test. The 
observation data (interpolated) is used to 
supervise the data in the training stage and to 
verify (evaluate) in the test (forecasting) stage. 
Lastly, we revise the model based on the 
verification and evaluation results.  For a new 
model, the last two steps (training and testing) 
may be repeated.  

Figure 11 shows an example of interpolating 
the observed track data in latitude and longitude. 
The left is the original data, and the right is the 
interpolated data. The thick short blue line 
shows the cut off place for the training set and 
testing/forecasting set.  

The statistical models employed in this study 
are multiple linear regression and regression 
based random forest. The data from NWP 
models serve as predictors, and the observed 
data serves as the real value of the predictant. 
In this study, different statistical models are 
built/trained separately for different variable 
fields. All the following numerical experiments 
and statistical modeling were conducted in R.  

4. Results and Discussions 
4.1 Latitude 

When considering all 5 NWP models data as 
predictors, the following summary was obtained: 
Coefficients 

Estimate  Std. Error  t-value  Pr(>|t|)  
HWRF  -0.0154  0.009296    -1.659   0.09746 . 
WRF -0.0087  0.003232    -2.709   0.00685 ** 
GFS     0.1445   0.010434    13.852  <2e-16 *** 
ERA-I   0.3184   0.018298    17.402   <2e-16 *** 
ERA5   0.5614   0.014705     38.180  <2e-16 *** 

The trained regress model is  

𝑌𝑌 = −0.0154𝑋𝑋1 − 0.0087𝑋𝑋2 + 0.1445𝑋𝑋3 

+0.3184𝑋𝑋4 + 0.5614𝑋𝑋5 

where 𝑋𝑋1 is for the latitude from HWRF, 𝑋𝑋2 is for 
WRF, 𝑋𝑋3 for GFS, 𝑋𝑋4 for ERA-I, and 𝑋𝑋5 for 
ERA5. The above model is called full model. In 
the summary table, the 3 stars besides the Pr-
value for GFS, ERA-I and ERA5, indicating that 
these three are the statistically significant 
predictors.  

Next, we considered only these three 
predictors in the regression model. We obtained 
the following summary:  

Coefficients 
Estimate  Std. Error  t-value  Pr(>|t|)  

GFS     0.1254   0.009229    13.59    <2e-16 *** 
ERA-I   0.3369   0.017682    19.05     <2e-16 *** 
ERA5   0.5380   0.012701     42.36    <2e-16 *** 

We call this model the short model. In this short 
model, all the coefficients are positive, and they 
add up to 1. In a sense, these coefficients can 
be considered as the weights. It tells us that the 
ERA5 and ERA-I resemble the observation track 
very well.  

We also did the simple ensemble by 
averaging all the ensemble members. To 
compare with different regression models, we 
employed the random forest regression model 
which picks up significant contributors 
automatically. The results are shown in Table 1. 
For latitude, Random Forest model gives the 
best result, with error 15 nautical miles. The 
NHC error for the track is about 33 nautical 
miles. The simple ensemble on the short model 
members also provides a good result.  

4.2 Longitude 

For some reason, the performance of the 
models on the longitude is quite different. Similar 
to the models for latitude, we obtained the full 
model with all 5 NWP models as predictors and 
a short model. The results of the root mean 
square errors are displayed in Table 2. 
Surprisingly, the results from random forest did 
not improve the MLR. The best model (the 
smallest error) is the simple ensemble on the full 
model, with an error of 22.8 n miles, comparable 
with the NHC error.  



4.3 Intensity 

Prediction of intensity is always much harder 
than that of track. Here is a quick show for some 
of the regression models on the maximum wind. 
Again, we have the full model and short model. 
Only the ERA-Interim is excluded in the short 
model. The summary of the full model for 
maximum wind of MLR:  

Coefficients 
Estimate  Std. Error  t-value  Pr(>|t|)  

(Int.)     86.2848 7.034765   12.265   <2e-16  *** 
HWRF  0.26694  0.026322    10.141  <2e-16 *** 
WRF -0.5412  0.007779    -69.567 <2e-16 *** 
GFS     2.57476  0.118608    21.708  <2e-16 *** 
ERA-I   0.02239  0.097575    0.229     0.819 
ERA5   -0.48353  0.051040   -9.474  <2e-16 *** 

It is clearly indicated that ERA-I is not a 
significant contributor in representing the 
maximum winds. The summary of the short 
model is:  

Coefficients 
Estimate  Std. Error  t-value  Pr(>|t|)  

(Int.)    87.11558 6.029308    14.449  <2e-16 *** 
HWRF 0.26502 0.024951     10.622  <2e-16 *** 
WRF     -0.5405  0.007376    73.296   <2e-16 *** 
GFS     2.58118  0.115280    22.390   <2e-16 *** 
ERA5   -0.48596 0.049906    -9.738    <2e-16 *** 

Similar work has been conducted to the 
minimum SLP (Sea Level Pressure). All the 
results for maximum wind and minimum SLP for 
intensity are shown in Table 3. For both, the 
averaging on the short model provides the best 
result, comparable with the NHC error. The 
random forest regression improved the MLR on 
the maximum wind, but not for the minimum 
SLP. The result from the MLR on the maximum 
wind is comparable with the best result and NHC 
error, not too far off. 

5. Conclusion 

In conclusion, we applied simple ensemble 
(SE), multiple linear regression (MLR), and 
random forest regression (RFR) techniques. For 
latitude, the RFR provides the best result, 
improving the NHC’s forecast significantly. For 
longitude, the SE on the full model provides the 
best result, improving the NHC’s forecast. For 
intensity, the SE on the short model provides the 
best result, comparable with the NHC’s forecast. 

Overall, the hybrid of SE with MLR and RFR is 
recommended. 
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8. Appendix 
 

8.1 Appendix A: Figures 
 

 

 

 

 

 

 

 

 

Figure 1. Hurricane Florence 2018 track from 
NHC 

Figure 2. Observed precipitation of Hurricane 
Florence 2018 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Track error from NHC 

 

Figure 4. Intensity error from NHC 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. WRF-ARW simulations 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. HWRF simulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. HWRF simulations 



 

 

 

 

 

 

 

 

 

Figure 8. Track errors for HWRF simulations Figure 9. Intensity errors for HWRF simulations 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

Figure 10. Track and intensity for the data collected. 



 

 

 

 

 

 

 

 

 

Figure 11. An example of interpolated data for the observation track. (a) The original track data; (b) The 

interpolated data. 

 

8.2 Appendix B: Tables 

 

Table 1. Errors from Various Models for Latitude 

Model MLR Full 
Model 

Simple 
Ensemble 
Full model 

MLR Short 
Model 

SE Short 
Model 

Random 
Forest 
Model 

NHC 

RMSE (deg) 0.4653696 0.4343811 0.4690583 0.3124698 0.2503998  

Distance 
(nautical 
miles) 

27.94 26.08 28.16 18.76 15.05 33 

 

Table 2. Errors from Various Models for Longitude 

Model MLR Full 
Model 

Simple 
Ensemble 
Full model 

MLR Short 
Model 

SE Short 
Model 

Random 
Forest 
Model 

NHC 

RMSE (deg) 0.6375 0.38 0.674112 0.49 1.4577  

Distance 
(nautical 
miles) 

38.25 22.8 40.45 29.4 87.62 33 

 

Table 3. Errors from Various Models for intensity 

Model MLR Full 
Model 

Simple 
Ensemble 
Full model 

MLR Short 
Model 

SE Short 
Model 

Random 
Forest 
Model 

NHC 

Max Wind 
RMSE (kt) 

15.2449 19.52458 14.4 0.3124698 34.40646 13 

Min SLP 
RMSE (mb) 

21.98858 10.6756 21.34215 9.19942 12.36754  

 


