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1. INTRODUCTION 

 

Several methods have been devised to find 
consensus among ensemble forecast members. 
For example, the ensemble mean, a simple point-
wise arithmetic average of ensemble members is 
commonly used in operational ensembles. However, 
due to the difference in spatial distribution and 
intensity of precipitation features in each ensemble 
member, the ensemble mean of precipitation 
forecasts tends to reduce the magnitude of forecast 
maxima while expanding the areal coverage of light 
precipitation.  

The probability-matched (PM, Ebert, 2001) 
ensemble mean and localized PM (LPM, Clark, 
2017, Snook et al., 2020) mean methods have been 
introduced to overcome these problems. The PM 
and LPM use ensemble members' probability 
density function (PDF) to preserve the ensemble 
forecast's maxima. PM and LPM methods 
redistribute the values of each grid point of the 
ensemble mean but may not preserve the spatial 
structures of the features themselves, which can be 
blurred if there are offsets of feature locations 
among the members. 

This study aims to find a way to improve 
ensemble consensus precipitation by directly 
considering the spatial offsets among ensemble 
members. This study uses the phase-correcting 
method to align the fields of each ensemble member 
to a common location. Offsets are found for each 
ensemble member with respect to other members in 
pairs, and the vector mean offset is calculated from 
all pairs. The fields are shifted by this offset, moving 
them toward a common central location, and the 
Spatially Aligned Mean (SAM) is obtained by 
averaging the re-aligned members.  

 

 

 

2. METHOD 

 

The algorithm used in Spatially Aligned Mean 
(SAM) is based on the Phase-Correcting Data 
Assimilation method (Brewster, 2003), as 
diagramed in Fig. 1. This algorithm is to find shift 
vectors that minimize a squared difference sum 
among a pair of ensemble members. Once shift 
vectors are obtained and averaged among all pairs, 
each member's field or fields can be adjusted using 
shift vectors. 

 

Figure 1. Flowchart for obtaining phase-shift vector fields 

 

Since spatial offsets can vary across the model 
domain, the algorithm proceeds by dividing the 
domain into overlapping patches. The patch size is 
flexible and can be set while considering horizontal 
scales like synoptic-scale, meso-alpha, and meso-
beta scale. For each test patch, shift vectors are 
determined by finding the offset of grid points in the  



 

 

 

 

Figure 2.  HREF result of 2022 Hurricane Ian case (original field) 

 

 

Figure 3. Shifted fields of HREF result of 2022 Hurricane Ian case with shift vectors 

 

 

Figure 4. Ensemble mean, Spatially Aligned Mean, LPM, and SAM-LPM field of HREF result of 2022 Hurricane Ian 
case 



 

 

 

x/y directions, which minimizes the RMS differences 
between each pair of members, including a penalty 
for large offset distance. The entire domain's shift 
vector field is obtained by averaging all the 
overlapping test patches’ shift vectors. An iterative 
approach using a cascade of test patch sizes can 
be applied so that both large-scale and small-scale 
phase errors can be corrected. 

After determining the shift vectors for each 
member-member pair, the vectors are then 
averaged to find the offset for each member to bring 
the fields to a central location.  After moving the field 
using the calculated and averaged shift vectors, the 
field values are reassigned using the PDF from the 
original field to restore its intensity. This is 
necessary because moving the grid involves 
interpolation which has the effect of smoothing and 
losing the maxima. 

To illustrate this, we present an example of the 
technique applied to US operational models. Fig. 2. 
is the 3-h precipitation accumulation from the 
individual members of the US High-Resolution 
Ensemble Forecast (HREF) for the case of  
Hurricane Ian in 2022, and Fig. 3. is the result after 
SAM has been applied. Applying the LPM technique 
to the average of all phase-shifted members (SAM-
LPM) results in the fields shown in Fig. 4.  The 
forecasted precipitation fields have a more clear eye 
structure and the spiral band of the hurricane to the 
northeast of the center, which has intense rainfall on 
the east coast of Florida, closely matching the 
observed rainfall. 

 

3. EXPERIMENT DESIGN 

 

In this experiment, the Spatially Aligned Mean 
(SAM) is applied to 3-hour accumulated 
precipitation output from an operational high-
resolution (~3 km) Convection-Allowing Model 
(CAM) ensemble, the US High-Resolution 
Ensemble Forecast (HREF), which has ten 
members, including  the 12-hour time-lagged 
members. Also, to preserve the ensemble forecast 
maxima, LPM is applied to the SAM results.  

The proposed SAM-LPM technique is applied 3- 
for lead times of 15 to 36 hours over the contiguous 
United States (CONUS) and verified using Stage IV 
(4km resolution) precipitation data. Testing is done 
for four weeks (Jun 20 ~ Jul 3, Jul 10 ~ Jul 24) in the 
summer of 2022 corresponding to the 
Hydrometeorology Testbed (HMT) Flash Flood and 

Intense Rainfall (FFaIR) experiment. Both 00Z and 
12Z ensemble members are used. 

In this experiment, two cascading test patch 
sizes are used. For the first pass, the patch size is 
600 km (synoptic scale), and 225 km (meso-alpha 
scale) is used for the patch size in the second pass. 
Both results of SAM and SAM-LPM are evaluated 
for both the first and the second passes. 

Point-wise and spatial feature verifications are 
performed with several precipitation thresholds 
using the Meteorology Evaluation Tools (MET) 
program. The neighborhood method is used with a 
32 km width for point-wise verification, and Method 
for Object-based Diagnostic Evaluation (MODE) is 
used for spatial verification. 

Detailed results of each case are presented on 
the Web via the links at 
https://caps.ou.edu/clee/ens/ens_view.php. 

 

4. VERIFICATION RESULTS 

 

The verification is performed with several 3h 
precipitation thresholds (1 mm, 5 mm, 10 mm, 15 
mm, 20 mm, and 25 mm) in order to evaluate 
performance tor weak through intense rainfall. 
Since these verification results have a diurnal cycle 
corresponding to the diurnal variation in 3-hour 
rainfall, the overall verification result will also be 
provided in the figures. 

Figures 5 and 6 show Frequency Bias results for 
the 10 mm and 25 mm 3h rainfall threshold over the 
2022 FFaIR period. At these thresholds the 
frequency bias for SAM is higher (and closer to 1.0, 
ideal) than that of the regular mean. Also, the 
frequency bias for SAM- LPM is higher than the 
standard LPM, which means SAM-LPM has more 
compact high-intensity values because the 
neighborhood method is used for the verification 
with the same PDF. In the case of intense rainfall 
with a 25mm/3h threshold, the overall Frequency 
Bias for SAM-LPM has a score close to 1. 

Figures 7 and 8 show the Probability of Detection 
(POD) results for 10mm and 25mm 3-h rainfall 
thresholds over the 2022 FFaIR. POD for SAM and 
SAM-LPM increases significantly compared to the 
regular mean and LPM, especially in high-impact 
rainfall. These results also include a diurnal cycle, 
and in the case of heavy rain, night-time 
precipitation generally scores better because 
convection initiation in the afternoon is hard to 
predict with the right position and timing.

https://caps.ou.edu/clee/ens/ens_view.php


 

 

 

 

Figure 5. Frequency Bias results for 10mm/3h rainfall threshold over the 2022 FFaIR 

 

 

 

Figure 6. Frequency Bias results for 25mm/3h rainfall threshold over the 2022 FFaIR 

 

 

 

 

 

 



 

 

 

Figure 7. Probability of Detection results for 10mm/3h rainfall threshold over the 2022 FFaIR 

 

 

 

Figure 8. Probability of Detection results for 25mm/3h rainfall threshold over the 2022 FFaIR 

 

 

 

 

 

 



 

 

 

Figure 9. False Alarm Ratio results for 10mm/3h rainfall threshold over the 2022 FFaIR 

 

 

 

Figure 10. False Alarm Ratio results for 25mm/3h rainfall threshold over the 2022 FFaIR 

 

 

 

 

 

 

 



 

 

 

Figure 11. Equitable Threat Score results for 10mm/3h rainfall threshold over the 2022 FFaIR 

 

 

 

Figure 12. Equitable Threat Score results for 25mm/3h rainfall threshold over the 2022 FFaIR 



 

 

 

Figures 9 and 10 show the False Alarm Ratio 
(FAR) results for 10 mm and 25 mm 3-h rainfall 
threshold over the 2022 FFaIR. At the lower 
threshold (10 mm), FAR for SAM is higher than the 
regular mean, but in the higher threshold (25 mm), 
FAR for SAM is similar. FAR for SAM- LPM is similar 
to regular LPM for all thresholds, which means the 
spatial alignment technique does not worsen the 
results for this metric. 

Figures 11 and 12 show the Equitable Threat 
Score (ETS) results for 10mm and 25mm 3-h rainfall 
thresholds over the 2022 FFaIR period. ETS for 
SAM and SAM-LPM is higher than the simple mean 
and LPM for all time periods. ETS for SAM is slightly 
better than SAM-LPM because although the SAM-
LPM has a much higher POD, it also has a higher 
FAR than SAM at this threshold. 

 

5. SPATIAL VERIFICATION  

 

In this section, spatial verification using Method 
for Object-Based Diagnostic Evaluation MODE 
(Bullock et al. 2016) as part of the MET Toolkit 
(Jensen et al., 2023) will be shown for a few cases. 
These cases are examined to see if SAM improves 
the spatial features of ensemble consensus. 

The first case is one of a squall line along a front 
from 12 UTC on 25 July 2022. Due to the spatial 
difference of the location of the boundary in the 24h 
forecasts, the standard LPM in Fig. 13  shows 
sections of the line in two parts, an artifact of 
position differences among individual members. 
SAM-LPM in Fig. 14. has a consistent single-line 
structure for the length of the squall line, similar in 
structure to the observed squall line. 

The improvement in forecast structure for SAM-
LPM vs LPM is measured quantitatively by the 
Interest metric of MODE (Table 1.), which is the sum 
of normalized feature scores such as intersection 
ratio, centroid distance, and angle distance.  The 
Interest score for the squall line feature is higher in 
SAM-LPM, due especially to a closer centroid 
distance and larger intersection area. 

 

 

 
Figure 13. MODE results (>=5mm/3) of LPM and 

Observation for squall line case (24h forecast valid at 
12 UTC 25 July 2022) 

 

 

Figure 14. MODE results (>=5mm/3) of SAM-LPM and 
Observation for squall line case (24h forecast valid at 
12 UTC 25 July 2022) 

 

 LPM SAM-LPM 

The interest of 
MODE 

0.92244 0.9605 

Centroid 
distance (km) 

35.35783 5.95921 

Intersection 
area (km^2) 

2221 3357 

Table 1. The scores of MODE metrics (>=5mm/3) of LPM 
and SAM-LPM for the squall line case (24h forecast 
valid at 12 UTC 25 July 2022) 

 

 

 



 

 

A case from 21 UTC 18 July 2022 shows phase 
difference in the propagation of a mesoscale 
convective system evident among 33h HREF 
member forecasts. Some members have intense 
rainfall along the border between Missouri and Iowa; 
the others have a convection positioned south and 
east of that border. Though the members have 
disagreements about the location of the convective 
system, SAM is able to bring all the forecasts to a 
common central position.  

 

 

Figure 15. MODE results (>=5mm/3) of LPM and 
Observation for convective system case (33h forecast 
valid at 21 UTC 18 July 2022) 

 

 

Figure 16. MODE results (>=5mm/3) of SAM-LPM and 
Observation for convective system case (33h forecast 
valid at 21 UTC 18 July 2022) 

 

 

 

 LPM SAM-LPM 

The interest of 
MODE 

0.97723 0.98144 

Area ratio 0.67505 0.80354 

Intersection 
area (km^2) 

702 877 

Table 2. The scores of MODE metrics (>=5mm/3) of LPM 
and SAM-LPM for the convective system case (33h 
forecast valid at 21 UTC 18 July 2022) 

 

The standard LPM in Fig. 15. shows separated 
objects, but SAM-LPM in Fig. 16. has a more 
compact object in Missouri. As a result, SAM-LPM 
has a precipitation feature (> 5 mm/3h) better 
matching the observed event, and the MODE 
scores (Table 2.) of SAM-LPM are improved for 
area ratio and intersection area leading to better 
overall Interest score. 

 

6. SUMMARY 

 

From the verification results for testing on HREF 
3h precipitation during four weeks of the summer of 
2022, the Spatial Aligned Mean (SAM) ensemble 
consensus technique outperforms the simple 
ensemble mean, and Spatially aligned LPM (SAM-
LPM) also outperforms the standard LPM method. 
The results show that the spatial alignment 
technique improves the ensemble consensus in 
common metrics such as ETS.  

Spatially aligned LPM (SAM-LPM) improves the 
structure of the mean as demonstrated in MODE 
results while preserving the ensemble forecast 
maxima, thus seems to be the best candidate for 
calculating an ensemble consensus for these fields.  
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