Thursday, 13 January 2000
In spite of all their problems, rain gauges measure rainfall in such a direct way when compared with other methods of estimating rainfall that comparing their totals to satellite estimates remains an essential tool in the validation of satellite products. Some disagreement between averages of satellite data and rain-gauge data is expected because of the very different sampling patterns of the two systems--the satellite provides only occasional snapshots of large areas, whereas rain gauges provide continuous measurements over very small areas. The comparison of the two requires that some quantitative measure be supplied for the amount of disagreement that can be tolerated due to the differences in sampling. As part of an effort to determine the sampling error of satellite averages, a space-time model for rainfall statistics was developed and its parameters fit to radar data from a field experiment conducted near the ITCZ in the eastern Atlantic (GATE). Although the model was intended to represent the statistics of relatively large scale fluctuations of rain, it is surprisingly consistent with the very different scales on which rain gauges observe. It can therefore be used to study some of the issues involved with comparing rain-gauge averages to satellite averages. Its implications for the best time and space scales for comparing the two will be discussed.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner