P4.29
Use of Collocated KWAJEX Satellite, Aircraft, & Ground Measurements for Understanding Ambiguities in TRMM Radiometer Rain Profile Algorithm
Eric A. Smith, NASA/GSFC, Greenbelt, MD; and S. Fiorino
Coordinated ground, aircraft, and satellite observations are analyzed from the 1999 TRMM Kwajalein Atoll field experiment (KWAJEX) to better understand the relationships between cloud microphysical processes and microwave radiation intensities in the context of physical evaluation of the Level 2 TRMM radiometer rain profile algorithm and uncertainties with its assumed microphysics-radiation relationships. This talk focuses on the results of a multi-dataset analysis based on measurements from KWAJEX surface, air, and satellite platforms to test the hypothesis that uncertainties in the passive microwave radiometer algorithm (TMI 2a12 in the nomenclature of TRMM) are systematically coupled and correlated with the magnitudes of deviation of the assumed 3-dimensional microphysical properties from observed microphysical properties. Re-stated, this study focuses on identifying the weaknesses in the operational TRMM 2a12 radiometer algorithm based on observed microphysics and radiation data in terms of oversimplifications used in its theoretical microphysical underpinnings.
The analysis makes use of a common transform coordinate system derived from the measuring capabilities of the aircraft radiometer used to survey the experimental study area, i.e., the 4-channel AMPR radiometer flown on the NASA DC-8 aircraft. Normalized emission and scattering indices derived from radiometer brightness temperatures at the four measuring frequencies enable a 2-dimensional coordinate system that facilities compositing of Kwajalein S-band ground radar reflectivities, ARMAR Ku-band aircraft radar reflectivities, TMI spacecraft radiometer brightness temperatures, PR Ku-band spacecraft radar reflectivities, bulk microphysical parameters derived from the aircraft-mounted cloud microphysics laser probes (including liquid/ice water contents, effective liquid/ice hydrometeor radii, and effective liquid/ice hydrometeor variances), and rainrates derived from any of the individual ground, aircraft, or satellite algorithms applied to the radar or radiometer measurements, or their combination.
The results support the study's underlying hypothesis, particularly in context of ice phase processes, in that the cloud regions where the 2a12 algorithm's microphysical database most misrepresents the microphysical conditions as determined by the laser probes, are where retrieved surface rainrates are most erroneous relative to other reference rainrates as determined by ground and aircraft radar. In reaching these conclusions, TMI and PR brightness temperatures and reflectivities have been synthesized from the aircraft AMPR and ARMAR measurements with the analysis conducted in a composite framework to eliminate measurement noise associated with the case study approach and single element volumes obfuscated by heterogeneous beam filling effects. In diagnosing the performance of the 2a12 algorithm, weaknesses have been found in the cloud-radiation database used to provide microphysical guidance to the algorithm for upper cloud ice microphysics. It is also necessary to adjust a fractional convective rainfall factor within the algorithm somewhat arbitrarily to achieve satisfactory algorithm accuracy.
Poster Session 4, Moisture, Fluxes and Retrievals
Thursday, 13 February 2003, 10:00 AM-12:00 PM
Previous paper