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1. INTRODUCTION 
 

Passive microwave remote sensing of 
precipitation from platforms such as the Special 
Sensor Microwave Imager (SSM/I), the Advanced 
Microwave Scanning Radiometer (AMSR), and the 
Tropical Rainfall Measurement Mission (TRMM) has 
been a major focus in hydrological research for the 
past several years. Successful estimation of 
precipitation from these platforms relies on the 
accuracy of the particular retrieval algorithm being 
utilized. Retrieval algorithms are based on cloud 
radiation databases (CRDs) to relate in-situ 
measurements of brightness temperatures and radar 
reflectivity profiles to a-priori microphysical profiles 
found in the CRDs. One problem with CRD retrieval 
based systems is that profiles can be chosen that 
are unrepresentative of the dynamical and 
thermodynamical state of the atmosphere. We have 
recently introduced the concept of the Cloud 
Dynamics and Radiation Database (CDRD) for 
precipitation retrieval purposes. The CDRD concept 
is an improved version of the current CRDs. The 
CDRD contains the same information as the present 
CRDs, but in addition contains information about the 
dynamical and thermodynamical structure of the 
atmosphere.  

The CDRD contains dynamical tags that are 
computed from a cloud-resolving model, the same 
simulations used to calculate brightness and 
microphysical profile information. The CDRD also 
provides the opportunity to investigate relationships 
between the microphysical structure of precipitation 
systems to large-scale dynamic and thermodynamic 
variables of the atmosphere. 
 

 
 
 
 
 

The objective of this paper is to first 
discuss the methodology for implementing the 
CDRD version 1.0 system over the globe and 
showing the possibility to retrieve useful subsets 
of information from a massive global database 
system. The dynamical and thermodynamic tags 
available in the CDRD are presented. The 
primary technique for extracting useful subsets 
of information is through the use of data mining 
techniques. Section 2 discusses several data 
mining techniques. Section 3 of the paper 
focuses on the implementation of the CDRD 
design. Section 4 focuses on the application of 
the CDRD system for data mining purposes. A 
sample CDRD database has been designed with 
eight different cloud resolving model (CRM) 
simulations. This test database is used to 
highlight data mining techniques for global and 
regional applications. A regional case, over 
central and southern California, focuses on 
orographically enhanced precipitation. This 
section specifically focuses on using the CDRD 
for hypothesis testing. The following hypothesis 
is purposed and tested: as dynamical tag 
dimensions increase the variance properties for 
the acquired profiles decreases. 
 
2. DATA MINING 
 

Simply defined, data mining is the use of 
data analysis tools to discover unknown 
relationships from large data sets. Data mining 
techniques are often used to predict future 
trends and behaviors allowing for knowledge-
based decisions. Data mining, growing in 
popularity, is used in both the public and private 
sectors. Industries such as banking, insurance, 
medicine, and general business often use such 
tools to reduce costs and raise efficiency. As the 
amount of data available to the earth science 
community continues to increase rapidly, data 
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mining has become a more desirable research tool 
to utilize large databases effectively. 

Data mining techniques are utilized as a tool 
for efficiently extracting useful subsets of information 
from the CDRD. With the use of such techniques 
previously unknown relationships between 
dynamical/ thermodynamic tags and microphysical 
properties can possibly be observed. Managing the 
physical size of the CDRD data warehouse presents 
a challenge of extracting useful information. 
Advanced data mining techniques are used to 
effectively retrieve appropriate parameters for 
retrieval purposes. Possible data mining techniques 
are now discussed in further detail. 

Table 1 provides a short summary of popular 
data mining processes. Neural networks are analytic 
techniques that are modeled after the cognitive 
process of learning and the neurological functions of 
the brain. This method is capable of predicting new 
observations from previous observations. The 
technique is able to “learn” from existing data 
already present in the data warehouse. Denby 
discusses how artificial neural networks are used in 
high-energy physics research (1993).  

A decision tree is a model that is both 
predictive and descriptive (Frank and Whitten, 2005). 
It is called a decision tree because the resulting 
model is presented in the form of a tree structure. 
The visual structure of a decision tree makes the 
tool easy to understand. Decision trees are most 
commonly used for classification by predicting what 
group a case belongs to. Decision trees can also be 
used for regression, predicting a specific value. The 
primary output from a decision tree algorithm is the 
tree itself. Th e training algorithm that creates the 
tree is referred to as induction. Decision trees are 
commonly used in business to make decisions, 
based on if-then relationships.  

Genetic algorithms are similar to the process of 
natural selection. This method searches for the most 
optimal matches based on certain criteria or 
combinations. The desired quantity (“organism”) is 
retrieved based on the most optimal set of criteria 
(“genes”).  Genetic algorithms have been used in 
finance but are not very practical as a data analysis 
tool. This is due to the lack of statistical significance 
from the obtained solution.  

The nearest neighbor method, or sometimes 
referred to as the k-nearest neighbor method, refers 
to similar data points, within a data warehouse, that 
are “living” in each other’s neighborhood. The “k” 
refers to the number of “neighbors” being 
investigated to retrieve a certain quantity. For 
example, 6-nearest neighbor looks at six neighbors. 
This data mining tool is more of a search technique 

than a learning tool. This technique is often used 
with small subsets of data.  

Finally, rule induction is a data mining 
technique that extracts statistically significant 
data using if-then rules. Cohen (1995) presents 
a fast effective example of a rule induction 
technique. This tool can be used to infer 
generalizations from the information in the data.  

A rule induction scheme is the best option 
to effectively mine data from the CDRD, based 
on the statistical properties of the scheme. The 
proposed data-mining scheme allows for the 
selection of microphysical profiles from the 
database using dynamical and thermodynamical 
variables linked to microphysical profiles. The 
available variables (“tags”) in the CDRD are 
discussed later in the paper. The CDRD mining 
algorithm retrieves the appropriate profiles and 
computes the corresponding variance, 
throughout the entire vertical atmospheric 
column. The matching of microphysical profiles 
with dynamic tags relies on a Bayesian selection 
approach. 
 The advantage of using dynamic and 
thermodynamic variables for microwave remote 
sensing is because such tags increase the 
number of constraints on the retrieval algorithms. 
In a Bayesian selection scheme, when limited by 
more constraints, the database should provide 
increased representative profi les for a particular 
precipitation system. 
 

 
3. CDRD IMPLEMENTATION 

 .  
The fundamental core of the CDRD 

system is based around a CRM. The UW-NMS 
is used to produce simulations for the 
formulation of the CDRD version 1.0 system. 
The UW-NMS is described in detail by Tripoli 
(1992). The model used for radiative transfer 
calculations is the Successive Order of 
Interaction (SOI) Radiative Transfer Model. The 
SOI is a one-dimensional azimuthally averaged, 
plane-parallel radiative transfer model. This 
model includes the effects of scattering from all 
hydrometeors. Atmospheric polarization is 
ignored, but not surface polarization (Heiginger, 
O’Dell, Bennartz, and Greenwald 2005). 

Every day a random global location is 
selected for a new CRM simulation. The random 
locations move between four global regions, 
based on the equator and international dateline. 
This technique is used for somewhat equal 
global simulation spacing. Figure 1 shows where 
the random inner grids are located for the 



sample database (two simulations per region). This 
type of image is updated daily and available online. 
The UW-NMS is used to simulate a 12 hour 
prediction over the selected location. Microphysical 
profiles and dynamical/ thermodynamical tags are 
saved at the 12 hour forecast time. Vertical profiles, 
at all 36 levels, of microphysical variables are saved 
based on simulated surface precipitation rates. The 
criteria for saving a profile in the database occurs 
when surface rain rates are 0.50 mm hr-1 or greater 
and/or frozen (snow, graupel, aggregates, pristine 
crystals) surface rates are 0.25 mm hr-1or greater. 
These criteria were selected based on the capability 
of current microwave remote precipitation sensors. 
These precipitation criteria are near the accepted 
lower limits of useful satellite data. A sample grid 
setup, over the California region, is shown in figure 2.  
Table 2 outlines the specific variables that are 
included in a “microphysical profile”. The available 
dynamic and thermodynamic tags which are paired 
with microphysical profi le points in the CDRD system 
are listed in tables 3 and 4. Table 3 lists the 
variables that are produced from the outer grid of the 
UW-NMS, at 50km resolution. These variables are 
referred to as large-scale tags. Table 4 lists the 
variables that are produced from the inner grid of the 
UW-NMS, at 2km resolution. These variables are 
referred to as the high-resolution tags. 
 
 
4. CDRD APPLICATION 
 

The following section shows how the CDRD 
can be utilized to retrieve the “best-possible” 
microphysical profile for a particular event. Of 
particular focus in this paper is the severe storm that 
impacted California, from January 7th - 11th, 2005. 
This storm brought heavy orographic precipitation 
over much of the Sierra Nevada mountain chain. 
Certain areas in California recorded over 25 inches 
of equivalent rainfall. The case-study retrieval time is 
January 8th, 2005 at 12Z over the selected domain. 
Figure 3 shows the accuracy of the UW-NMS 
simulation. Accumulated precipitation from January 
7th – 11th is compared with NCEP stage IV radar 
data.  

At first, microphysical profiles are selected from 
the 8-run sample CDRD database using only 
brightness temperatures, at 89.0 GHz. Figure 4 
shows a simulated 89.0 GHz field, produced by the 
UW-NMS and SOI models. The idealized simulated 
TB field is taken as “truth” for selection of 
microphysical profiles from the CDRD. The goal is to 
retrieve the best profile for the Sierra Nevada region, 
where the majority of orographic precipitation is 
occurring. The simulated overpass suggests 

microphysical profiles should be selected from a 
range of brightness temperatures (180 - 240K). 
These are the brightness temperatures that are 
occurring over the mountain range.  
 Using the CDRD with only brightness 
temperatures is similar to a CRD approach. Next, 
profiles are selected using brightness 
temperatures paired with certain dynamical and 
thermodynamical tags. First, microphysical 
profiles are selected using the brightness 
temperatures along with mean sea level 
pressure and surface temperature. Second, 
profiles are selected using 89.0 GHz brightness 
temperatures, mean sea level pressure, surface 
temperature, and topography elevation. Since 
the database being used only contains 8 
separate model runs, over the entire globe, 
three extra tags along with brightness 
temperatures is enough to correctly identify the 
desired California profiles.  
 Table 5 shows the range for each tag 
used and the number of microphysical profiles 
that are retrieved. Notice that the number of 
possible microphysical tags decreases around 
91 percent by adding only two dynamical tags. 
The tags were taken from the outermost grid of 
the UW-NMS, which uses 50km grid spacing. 
The follow-up paper uses an operational model 
such as the GFS forecasting system to obtain 
the required dynamical tags.  
 The speculated hypothesis for showing 
the advantages of the CDRD approach is that 
the variance of microphysical profiles decreases 
as the number of dynamical tags increases. 
Figure 5 shows the mean vertical profile for total 
condensate mixing ratio. The mean changes as 
the number of profiles decreases. Figure 6 
shows the structure of the variance in the 
microphysical profiles. When using only 89.0 
GHz brightness temperatures, there is a 
significant amount of variance in the retrieved 
microphysical profiles. When dynamical tags are 
included, the variance of the retrieved profiles 
drops significantly. When using the CDRD.v1 
system for real-time applications it is theorized 
that more than two or three dynamical/ 
thermodynamical tags are needed to narrow the 
search for the “true” microphysical profile. In this 
case, since there are only 8 runs over the globe, 
the addition of the first two tags narrowed the 
focus to the California region. Eventually, the 
CDRD will be made up of hundreds of 
simulations globally. 
 
 
 



5. CONCULSIONS 
 

This paper highlights several data mining 
techniques and applications. A rule induction 
scheme best matches the technique used for 
retrieving information from the CDRD data 
warehouse. A sample CDRD database, 8 
simulations, is used to highlight the benefit of using 
the CDRD approach rather than a traditional CRD 
approach. An orographic case study over California 
is used to show the value added, by using dynamic 
and thermodynamical tags along with brightness 
temperature fields. Because of these tags, the 
average vertical variance structure in the profiles 
retrieved significantly decreases. This paper has 
shown that by using the CDRD tag approach more 
accurate microphysical profiles can be retrieved from 
the accompanying database.  

The CDRD is a robust system that improves 
microwave precipitation retrieval techniques. This 
system can also be used for many other earth 
science applications. The CDRD is available online 
and can be used to investigate many possible 
relationships between microphysical quantities and 
atmospheric parameters.   
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TABLE 1 – Popular Data Mining Processes 
 

Artificial neural networks Non-linear predictive models that learn 
through training and resemble biological 
neural networks in structure. 

Decision trees Tree shaped structures that represent sets of 
decisions. These decisions generate rules for 
the classification of the dataset. 

Genetic algorithms Optimization techniques that use processes 
such as combination.  

Nearest neighbor method A technique that classifies each record in a 
dataset based on a combination of classes of 
the k record(s) most similar to it in a historical 
dataset. 

Rule Induction The extraction of useful if-then rules from 
data based on statistical significance.  

 
 
 
 
 
 
TABLE 2 – UW-NMS Microphysical Profile 

 
Total Condensate Mixing Ratio 

Rain Mixing Ratio 
Cloud Mixing Ratio 

Water Vapor Mixing Ratio 
Graupel Mixing Ratio 

Aggregate Mixing Ratio 
Pristine Crystal Mixing Ratio 
Surface Precipitation Rates 

(Rain, Snow, Aggregate, Pristine Crystal, Graupel) 
Surface Skin Temperature 

Q1, Q2 
Temperature 

Pressure 
Height 

Zonal Wind (U) 
Meridional Wind (V) 
Vertical Velocity (w) 

 
 
 

 
 
 
 

Table 1: Possible data mining techniques for CDRD data mining 

Table 2: CDRD Microphysical profile variables  



 
 
 
 
TABLE 3 – Large Scale Dynamic Tags 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean Sea Level 
Pressure (hPa) 

Freezing Level (m) Surface Theta 
Gradient 

LFC Height (m) 

Surface 
Temperature (F) 

Lifted Index 700mb Theta 
Gradient 

LCL Height (m) 

**U-Wind (m/s) Froude Number 
 

Surface Theta-E 
Gradient 

Topography Height 
(m) 

**V-Wind (m/s) Surface Theta-E (K) 700mb Theta-E 
Gradient 

PBL Height (m) 

U Momentum Flux Surface Brunt 
Vaisala Frequency 

 

** Q Vector 
Convergence 

Richardson Number 
in the PBL 

V Momentum Flux **Temperature Surface Divergence Potential Vorticity 
Advection at 700 

and 250 mb 
CIN (J/kg) Potential Vorticity at 

700 and 200 mb 
Divergence at 700 

and 200 mb 
Height of Maximum 

Cape (m) 
Maximum Cape 

(J/kg) 
Surface Vertical 

Vorticity 
**Vertical Velocity 

(m/s) 
Diabatic Moisture 

Term 
Surface Cape (J/kg) Vertical Vorticity at 

700 and 200 mb 
Theta-E minimum 

(K) 
Latent Heat Term 

Kinetic Energy 0-6km Wind Shear 500 and 850 mb 
thickness (m) 

**Specific Humidity 

Table 3: Large-scale tags for the CDRD.  
  ** Denotes vector variables (1000,925,850,700,500,250,200,150,100mb) 



 
 
 
 
 
 
TABLE 4 – High-Resolution Dynamic Tags 
 

 
 
 
 
 

 
 
 

TABLE 5 – CDRD Data Mining Case Study –  
California Orographic Precipitation 

 
Parameter Range Number of 

89.0 GHz Temps (K) 180 - 240 132474 

Mean Sea Level Pressure (hPA) 1008 - 1014 6138 

Surface Temperature (K) 262 - 282 4990 

Elevation (m) 700 - 4000 

 

 

 
 
 
 
 
 
 

Cloud Ceiling (m) ** Temperature (K) 
Topography Height (m) ** Q Vector Convergence 
Largest Topography Neighbor Difference 
(m) 

** Vertical Velocity (m/s) 

Direction of Topography Direction (degrees) Cloud Fraction 
PBL Height Convective Cloud Fraction 
Mean Sea Level Pressure (hPA) Stratiform Cloud Fraction 
Surface Pressure (hPA)  

Table 4: High-resolution tags for the CDRD.  
  ** Denotes vector variables (1000,925,850,700,500,250,200,150,100mb) 

Table 5: Statistics from the data mining orographic case study 



 
 
 
 

 
 
 
 
 
 
 
 

Figure 1. Sample CDRD 
database CRM locations  
 
Figure 2. Nested grid 
structure used for UW-
NMS CDRD simulations. 
This figure shows the 
setup over the California 
case study region 



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Left: 4 Day Accumulated Rainfall (in) (12Z Jan 07 – 12Z Jan 10) from UW-NMS 
Right: 4 Day Accumulated Rainfall (in) (12Z Jan 07 – 12Z Jan 10) from NCEP Stage 4 Radar Data 

Yellow Contour – 3 inches  
Black Contour – 7 inches  



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. This figure shows the simulated 89.0 GHz brightness temperature field for the 
California case study region on January 8 th, 2005 at 12Z.  



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. This figure shows the total condensate mixing ratio mean for the three 
different types of retrieval.  



 
 
 
 
 

 
 
 
 
 
 
 

 

Figure 6. This figure shows  the total condensate mixing ratio variance taken in the vertical 
for the three different types of retrieval. 


