
P4.5 APPLICATION OF THE HYDRO-ESTIMATOR RAINFALL ALGORITHM OVER HAWAII 
 

Robert J. Kuligowski* 
NOAA/NESDIS Office of Research and Applications, Camp Springs, MD 

 
Jung-Sun Im, J. Clay Davenport 

I.M. Systems Group, Kensington, MD 
 

Roderick A. Scofield 
NOAA/NESDIS Office of Research and Applications, Camp Springs, MD 

 
 
 
1. INTRODUCTION 
 
 The Hydro-Estimator (HE; Scofield and 
Kuligowski 2003) has been the operational 
satellite rainfall algorithm of the National 
Environmental Satellite, Data, and Information 
Service (NESDIS) since the autumn of 2000, and 
has been available over the continental United 
States to National Weather Service (NWS) 
forecasters via the Advanced Weather Interactive 
Processing System (AWIPS) since the spring of 
2004.  The HE uses infrared (IR) window channel 
(10.7-µm) brightness temperatures as the main 
basis for discriminating raining from non-raining 
areas and for estimating rainfall rates, and also 
uses data from numerical weather prediction 
models to provide additional information about 
moisture availability, subcloud evaporation of 
precipitation, impact of the thermodynamic profile 
on cloud heights, and orographic enhancement or 
reduction of rainfall. 
 
 Hawaii is an area where satellite-based rainfall 
information would be highly useful given the 
incomplete radar coverage over the state and the 
very rapid hydrologic response of local streams to 
rainfall.  However, the HE was developed primarily 
for rainfall from deep, cold-topped convective 
clouds.  This has greatly limited its applicability to 
regions like Hawaii, where complex topography 
and oceanic air masses often combine to produce 
heavy rainfall from very low (warm) cloud tops 
(e.g., Austin et al. 1996; Szumowski et al. 1997).  
This makes it necessary to develop a HE-like 
algorithm that is specifically tailored for Hawaii’s 
somewhat unique relationships between cloud 
conditions and rainfall rates. 

2. DATA SETS AND METHODOLOGY 
  
2.1 Data Sets 
 
 Data from 7 days in Hawaii in 2004 that 
featured heavy rain were selected for the initial 
recalibration work:  22-23 January, 26-28 
February, and 3-4 August.  For all cases the 
following data sets were obtained: 
• GOES-10 Imager brightness temperatures 

(Tb’s) for  channels 3 (6.9 µm), 4 (10.7 µm), 
and 5 (12.0 µm); 

• Eta model temperature (T) and water vapor 
mixing ratio (qv) profiles which were used to 
compute stability and convective equilibrium-
level temperature; 

• Eta model precipitable water (PW) and relative 
humidity (RH); 

• Eta model 925 and 850 hPa winds, which 
were combined with digital elevation model 
(DEM) data at several different resolutions to 
determine the vertical motion component from 
orographic effects; 

• Hourly rain gauge data; 
• Base radar reflectivity data. 
 

Since satellite estimates of rainfall provide 
instantaneous rates rather than accumulations 
over time, radar-based rainfall rates were 
considered to be a more appropriate calibration 
data set than the rain gauge data.  These rain 
rates were obtained by converting the radar 
reflectivity data to rain rates using the “tropical” Z-
R relationship (Z=250R1.2, where Z is the 
reflectivity and R is the rain rate in mm/h).  
However, there are biases in such rain rates due 
to effects such as uncertainties in the Z-R 
relationship, so the radar rain rates were adjusted 
using rain gauge data.  A basis for adjustment was 
obtained by aggregating the instantaneous radar 
rain rates into hourly totals and then regressing 
the rain gauge amounts against the corresponding 

 

 
 
*Corresponding author address:  Dr. Robert J. 
Kuligowski, E/RA2  RM 712WWBG, 5200 Auth
Rd., Camp Springs, MD  20746-4304; e-mail: 
Bob.Kuligowski@noaa.gov. 
radar rainfall totals in log-log space to account for 

mailto:Bob.Kuligowski@noaa.gov


any nonlinearities in the relationship between the 
two.  This adjustment equation was then applied to 
the instanteous radar fields.  The final steps were 
to aggregate these radar fields to the GOES 
footprint size and to use the hourly radar total N1P 
product to identify and remove areas of beam 
block. 
 
2.2 Rain/no Rain Separation 
 
 The relationship between the value of each 
predictor and the occurrence of rainfall was 
determined by computing the conditional 
probability of precipitation (PoP) as a function of 
the value of each predictor.  The threshold PoP 
value was then selected in order to give an 
unbiased result (i.e., the same number of raining 
pixels as observed, even if they are not in the 
same locations).  The threshold PoP can vary from 
the expected value of 0.50 because of noise in the 
data.  The relative skill of each rain/no rain 
predictor was then evaluated by computing the 
Heidke Skill Score (HSS) based on the 
aforementioned threshold value.  The best rain/no 
rain predictor turned out to be T10.7, with a PoP 
value of 0.52 corresponding to a temperature of 
230.5 K. 
 
 Experiments were then performed using T10.7 
in combination with a number of other predictors, 
and using PW as a second predictor resulted in 
some improvement in skill—specifically, the 
threshold T10.7 below which rain would occur is 
higher for moist environments than for dry ones 
(Fig. 1).  However, none of the efforts to add a 
third predictor resulted in an improvement in skill 

over the T10.7-PW combination.  Therefore, over 
Hawaii the threshold T10.7 below which pixels 
would be assigned rainfall rates was selected by 
linearizing the rain/no rain line in Fig. 1. 
 
2.3 Rain Rate Calibration 
 
 The calibration of rainfall rate was performed 
using only those bias-adjusted radar pixels that 
were reporting nonzero rainfall.  The first step was 
to evaluate the ability to fit each of the predictors 
to a function related to the rainfall rate.  This was 
done first by plotting the rainfall rate as a function 
of each predictor in a Tukey box plot to get an idea 
of the approximate function shape (see Fig. 2a) 
and then by plotting the functions in log-log space 
to determine the best power-law fit.  This 
a) 
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Figure 2.  Relationship between T10.7 and rainfall rate 
over the Hawaiian Islands for the 7 days of test data, 
shown as (a) a Tukey box plot ( box top is 75th

percentile; middle is 50th percentile; bottom is 25th

percentile, and whiskers extend to the 5th and 95th

percentiles); and (b) a fitted function. 

Figure 1.  Probability of precipitation (PoP) as a function 
of both Eta model precipitable water (mm) and GOES-
10 10.7-µm brightness temperature.  The contour 
indicates the threshold value of PoP for producing an 
unbiased estimate of the number of raining pixels. 



procedure yielded T10.7 as the best predictor, 
according to the relationship shown in Fig. 2b. 
 
 Since the correlation between the rain rates 
derived from this equation and the observed rain 
rates was quite low (0.26), other predictors would 
be required to ensure an adequate depiction of the 
spatial and temporal variations in rainfall over 
Hawaii using the satellite data.  Possible second 
predictors were qualitatively evaluated by dividing 
the data into deciles of equal size of the second 
predictor and looking for differences in the 
resulting relationships between T10.7 and rainfall 
rate conditioned on the value of the second 
predictor.  Of all of the predictors examined, the 
most promising was the stability parameter, 
consisting of the difference in potential 
temperature between the surface and 700 hPa.  
As shown in Fig. 3, the relationship between T10.7 
and rainfall rate is quite sensitive to the value of 
this stability parameter. 

 
 In order to avoid the assumption of a particular 
equation fit during the quantitative evaluation of 
the second predictor, the additive and 
multiplicative residuals of rain rate (i.e., estimated-
observed and estimated/observed) were plotted as 
a function of each of the predictors to determine 
which predictor had the greatest value for 
explaining the residuals.  However, none of the 
available predictors exhibited a significant 
relationship with the residuals, though some at 
least exhibited overall trends with a significant 
amount of spread.  Perhaps because of this 
spread, the efforts to add a second predictor did 
not yield additional skill. 
  

3.  PRELIMINARY RESULTS 
 
 The results as of the writing of this preprint are 
shown in Fig. 4.  The ability of the algorithm to 
depict the areas of most significant rainfall is quite 
poor in this stage of development. 

 

a) 

b) 

Figure 4.  Comparison of preliminary satellite rainfall 
rates (a) with corresponding radar rain rates (b) for 1832 
UTC 4 July 2004.  Grey shading indicates missing data. 

Figure 3.  Rainfall rate as a function of T10.7 for different 
values of stability parameter (potential temperature 
between the surface and 700 hPa in units of *10-4K/m. 

4. FUTURE WORK 
 
 Efforts to improve the skill of the algorithm are 
ongoing, including the exploration of additional 
predictors such as visible and near-IR satellite 
data during the daytime and improved orographic 
adjustment parameters, which were demonstrated 
to have little impact during the preliminary work. 
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7. DISCLAIMER 
 
 The contents of this conference preprint are 
solely the opinions of the authors and do not 
constitute a statement of policy, decision, or 
position on behalf of NOAA or the United States 
Government. 


