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1. INTRODUCTION 
 
 Information about rainfall is critical for a wide 
variety of applications in the hydrometeorological 
sciences ranging from flash flood forecasting to 
water cycle and long-term climate studies.  Rain 
gauges provide accurate point measurements of 
rainfall but are generally spaced too far apart to 
capture the full extent of spatial variations in 
rainfall.  Portions of the globe with sufficient 
financial resources are able to supplement this 
relatively sparse gauge data with radar-based 
estimates of rainfall at high spatial and temporal 
resolution.  For oceanic regions and for those 
nations without sufficient economic resources to 
implement radar technology, satellites offer an 
alternative source of precipitation information at 
fine scales in space and time. 
 
 However, the use of satellite data comes with 
caveats.  Infrared (IR) and visible imagery aboard 
geostationary platforms provide continuous 
coverage (every 15 or 30 min) from roughly 60°N 
to 60°S, but since rain clouds are opaque at these 
frequencies, estimates of rainfall must be based 
on information about the cloud tops.  
Consequently, any information about conditions 
below cloud top must be derived from other 
sources; e.g., from numerical weather prediction 
(NWP) models.  Rain clouds are semi-transparent 
at microwave (MW) frequencies, which allows for 
a more accurate estimation of rainfall based on the 
bulk quantity of ice or water within the cloud.  
However, at the present time microwave-based 
remote sensing of clouds is only possible at low 
earth orbit, meaning that estimates can only be 

produced twice per day for a polar orbit, though 
more frequently for an inclined-orbit instrument 
such as the Tropical Rainfall Measuring Mission 
(TRMM) Microwave Imager (TMI). 
 
 Numerous efforts have been made to address 
these complementary strengths and weaknesses 
by combining IR- and MW- based data in an effort 
to produce rainfall retrievals with the temporal 
resolution of IR data but the relative accuracy of IR 
data.  Among these efforts are the Precipitation 
Estimation using Remotely Sensed Information in 
Artificial Neural Networks (PERSIANN) algorithm 
(Sorooshian et al. 2000), the Climate Prediction 
Center MORPHing (CMORPH) technique (Joyce 
et al. ), the Naval Research Lab-Monterey (NRL) 
algorithm (Turk et al. 2003), and the Multisatellite 
Precipitation Analysis (MPA; Huffman et al.2001).  
This paper describes a technique called the Self-
Calibrating Multivariate Precipitation Retrieval 
(SCaMPR) algorithm (Kuligowski 2002), which 
previously had been run only over the continental 
United States (CONUS) using data from a single 
GOES Imager but is now being expanded to 
worldwide application. 
 
2. SCaMPR OVERVIEW 
 
2.1 Algorithm Inputs 
 
 In theory, the SCaMPR framework (see Fig. 1 
for an illustration) is sufficiently flexible to accept 
any reasonable data field as input.  At this point, 
the real-time version of SCaMPR uses predictor 
data from the three GOES Imager channels that 
are not significantly affected by the sun: channel 3 
(water vapor), channel 4 (longwave IR), and 
channel 5 (split-window IR; GOES-10 only) or 6 
(C02 band; GOES 12 only).  In addition to the 
brightness temperatures from these channels, 
differences with channel 4 are used, along with 
two parameters derived from channel 4 that were 
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Algorithm (Ba and Gruber 2001) and modified 
from the Convective-Stratiform Technique (CST) 
of Adler and Negri (1988).   
 
 The target data are rainfall rates from the 
Defense Meteorological Satellite Program (DMSP) 
Special Sensor Microwave/Imager (SSM/I) using 
the algorithm of Ferraro (1997) and the NOAA 
Polar Orbiting Environmental Satellite (POES) 
Advanced Microwave Sounding Unit-B (AMSU-B), 
using the Ferraro et al. (2004) algorithm. 
 
 Since the MW rainfall rates are at a coarser 
spatial resolution than the GOES data, the GOES 
data are aggregated onto the MW footprints prior 
to calibration. 
 
2.2 Rain/no rain calibration 
 
 Calibration is performed once a suitable 
amount of data has is available in the training data 
set.  The exact definition of a “suitable” amount 

remains undetermined, and is a balance between 
the desire for large amounts of data to assure a 
statistically significant calibration, and short 
calibration periods to maximize the ability of the 
algorithm to adapt to changes in weather system 
types, season, etc.  The determination of the 
amount of training data to use has been done in 
different manners by different investigators—some 
have a fixed period of time for accumulating 
calibration data, while others require a specific 
number of matched data points to be available.  In 
this particular case, experiments by the authors 
have shown that optimal calibration is achieved 
with a minimum of 250 pixels with MW rain rates 
of at least 5 mm/h. 

 
Figure 1.  Schematic diagram of the SCaMPR algorithm. 

 
 The first step of rain/no rain calibration is to 
separate the matched predictor and predictand 
data into separate sets of raining and non-raining 
pixels.  Because of significant differences in the 
depiction of light rainfall by the SSM/I and AMSU-
B, the thresholds for rain versus no rain are 0.25 



mm/h for the SSM/I and 2.0 mm/h for the AMSU-
B. 
 
 Discriminant analysis is then used to 
determine which of the predictors best separates 
raining from nonraining pixels, and a threshold 
value is then selected to guarantee an unbiased 
separation.  In its current real-time configuration, 
SCaMPR will select up to two predictors for 
rain/no rain separation, but the program can easily 
be modified to select additional predictors if 
desired. 
 
2.3 Rain rate calibration 
 
 Only those pixels that are exhibiting rain rates 
above the aforementioned rain/no rain thresholds 
are used for rain rate calibration.  The 
predictor/predictand set is calibrated using 
stepwise forward linear regression to both select 
and calibrate the rain rate predictor(s).  The real-
time version of SCaMPR selects only a single rain 
rate predictor, but the code can easily be modified 
to select additional predictors if desired. 
 
 Since the relationship between IR window 
brightness temperature and rain rate is known to 
be highly nonlinear (e.g., Vicente et al. 1998), 
simple linear regression will not sufficiently capture 
the relationships between predictor(s) and target 
data.  Consequently, SCaMPR performs a 
regression of each predictor against the target 
data in log-log space to produce a power-law fit.  
Since a pure power-law equation (i.e., y=axb) 
contains only a multiplier (a) and an exponent (b), 
nonlinearities can occur in log-log space if an 
intercept is involved.  Thus, the value of the 
predictor is increased in increments (in linear 
space) until the fit in log-log space is optimized.  
This last improvement was just recently made in 
SCaMPR and has significantly improved its ability 
to fit nonlinear functions. 
 
 The resulting rain/no rain and rain rate 
calibration relations are then applied to 
independent predictor data to produce the rain 
rate estimates, and the calibration is updated 
when new training data become available (i.e,. 
when a new SSM/I or AMSU-B overpass is 
received and processed). 
 
2.4 Regional Calibration and Blending 
 
 The original version of SCaMPR used a single 
calibration for the entire region of interest; when 
the real-time version began running in November 

2004 it used GOES-12 data over the CONUS only.  
However, SCaMPR was found to exhibit a diurnal 
variation in rainfall that was determined not to be 
physical but to be the result in differences in the 
relationships between the predictors and the MW 
rain rates over different portions of the CONUS.  
For instance, the threshold IR window brightness 
temperature for rain/no rain discrimination was 
found to be much lower in the central portion of 
the CONUS (where cold-top convection is 
dominant) than over the western and eastern 
portions of the US (where stratiform and warm-top 
convection are common). 
 
 In response, SCaMPR was modified to 
perform separate calibrations for overlapping 
15x15-degree regions, and then the rain rate for a 
particular pixel is a weighted average of the rain 
rates derived for the 15x15-degree regions that 
overlap over the pixel.  This is similar to the 
regional calibrations used by the other IR/MW rain 
rate algorithms mentioned in Section 1.  This 
approach has the advantage of accounting for 
regional differences induced by differences in 
predominant rainfall systems. 
 
 An additional advantage to this approach is 
that it paves the way for SCaMPR to be applied 
globally without concerns about the differences in 
the channels used by various satellites in the 
global geostationary satellite constellation:  the 
GOES Imager, the EUMETSAT Meteosat Imager 
and Meteosat Second Generation (MSG) Spinning 
Enhanced Visible and Infra-Rared Imager 
(SEVIRI), and the Japan Meteorological Agency 
(JMA) Multi-functional Transport Satellite 
(MTSAT)-1R Imager.  SCaMPR simply makes use 
of the channels available for calibrating each 
particular 15x15-degree area.  This capability has 
already been demonstrated over the CONUS, 
where GOES-10 and GOES-12 have different 
bandwidths for their water vapor (channel 3), and 
GOES-10 has a 12.0-micron “split window” 
channel while GOES-12 has a 13.2-micron 
channel in the CO2 absorption band. 
 
3. EXAMPLE 
 
 Examples of the real-time SCaMPR products 
can be found on the Internet at 
http://www.orbit.nesdis.noaa.gov/smcd/emb/ff/sca
mpr.html.  Figure 2 shows a 1-hour SCaMPR total 
rainfall accumulation over the CONUS and nearby 
regions compared with the corresponding Stage IV 
radar/rain gauge product for 0800-0900 UTC 1 
November 2005.  The superior coverage of 
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SCaMPR compared to the radar is obvious, and 
SCaMPR does well at capturing the general 
precipitation features.  However, in this particular 
example the heaviest areas of rainfall are 
generally not depicted well in the SCaMPR 
retrieval. 

 
4. ONGOING AND FUTURE WORK 
 
 SCaMPR is being validated in real time in 
comparison to other experimental and operational 
satellite rainfall algorithms at NESDIS at 
http://www.orbit.nesdis.noaa.gov/smcd/emb/ff/vali
dation/validation.html, and is also being evaluated 
as part of the International Precipitation Working 
Group (IPWG) evaluation of high resolution 
precipitation products.  Improvements to SCaMPR 
will be explored based on the results of these 
findings. 
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7. DISCLAIMER 
 
 The contents of this conference preprint are 
solely the opinions of the authors and do not 
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constitute a statement of policy, decision, or 
position on behalf of NOAA or the United States 
Government. 


