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1. INTRODUCTION

Pilots’ ability to avoid turbulence during flight affects the
safety of the millions of people who fly commercial airlines
and other aircraft every year. Of all weather-related com-
mercial aircraft incidents, 65% can be attributed to turbu-
lence encounters, and major carriers estimate that they
receive hundreds of injury claims and pay out “tens of mil-
lions” per year (Sharman et al., 2005). In order to change
flight paths to avoid turbulence, air traffic controllers, air-
line flight dispatchers, and flight crews must know where
pockets of it are expected to be. While there are turbu-
lence forecasts available currently, both human and auto-
mated, none meet the Turbulence Joint Safety Implemen-
tation Team’s (TJIST) recommended > 0.8 probability
of moderate-or-greater (MOG) turbulence detection and
> 0.85 probability of null turbulence detection. TJIST is
comprised of representatives from the FAA, NASA, fed-
eral laboratories and end users, and all these groups are
working to improve turbulence forecasting accuracy.

The turbulence forecasting difficulty is due to two
main factors: (1) turbulent eddies at the scales that af-
fect aircraft (~ 100m) are a microscale phenomenon and
NWP models cannot resolve that scale, and (2) lack of
objective observational turbulence data. The prior fac-
tor was able to be addressed during the past 50 years,
because it was found that most of the energy associ-
ated with turbulent eddies at aircraft scales cascades
down from larger scales of atmospheric motion (Dut-
ton and Panofsky, 1970; Koshyk and Hamilton, 2001,
Tung and Orlando, 2003). The turbulence problem be-
came one of linking large-scale features resolvable by
NWP models to the formation of aircraft-scale eddies.
Numerous ‘rules of thumb’ empirical linkages, termed di-
agnostics, were developed by the National Weather Ser-
vice and airline meteorologists. The forecast skills of
these diagnostics depends on the forecaster (for man-
ual forecasts) and diminish with lead time; none meet the
TJIST recommendations, either alone or used together in
any current implementation. The diagnostics’ skills reflect
researchers’ imperfect understanding of the atmospheric
processes involved.

The imperfect nature of the current diagnostics leads
forecasters to depend, at least partially, on available tur-
bulence observations. Currently, the only available obser-
vations are pilot reports (PIREPs), and they are the sec-
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ond factor contributing to the difficulty of turbulence fore-
casting (and forecast verification). PIREPs are sparse,
aircraft-dependent, subjective assessments by pilots re-
ported during flight. Sharman et al. (2005) shows
that PIREP inaccuracy is not as large as once thought
(Shwartz, 1996), however, the distribution of reports is
not representative of the state of the atmosphere because
most non-turbulent areas are not reported.

One major effort by the FAA’s Aviation Weather Re-
search Program (AWRP), some major airlines, and the
National Center for Atmospheric Research’s Research
Applications Laboratory (NCAR/RAL) is the development
of a better observational data source: in-situ data (Corn-
man et al.,, 1995; Cornman et al., 2004). In-situ data
is turbulence observations recorded automatically every
minute during flight by on-board software. It addresses
many of the faults of PIREPs: it is aircraft-independent,
objective, less sparse, and is designed to be used quan-
titatively. While the in-situ measurement and reporting
system is still in its first and limited deployment, the au-
thors feel the data can and should be used now to in-
crease turbulence forecasting accuracy. Not only does
it offer higher-resolution observations, but is also helps
alleviate the inconsistent null turbulence-reporting issues
with PIREPs (Takacs et al., 2005).

Under sponsorship from the FAA/AWRP, NCAR/RAL
and NOAA'’s Forecast Systems Laboratory (NOAA/FSL),
together forming the Turbulence Product Develop-
ment Team (TPDT), developed the Graphical Tur-
bulence Guidance (GTG) forecasting product, a
completely automated turbulence forecasting sys-
tem currently running operationally at the Aviation
Weather Center (AWC) and available on the web at
NOAA’s Aviation Digital Data Service (ADDS) website:
http://adds.aviationweather.gov/turbulence (Sharman
etal., 2000; Sharman et al., 2002; Sharman et al., 2004;
Sharman et al., 2005). Currently, GTG nowcasts and
forecasts only clear-air turbulence (CAT), but is slated
to include turbulence associated with convection in later
releases. The NCAR/RAL team is researching how
to integrate in-situ data into the newest release of the
forecasting product, GTG2, as well as taking a fresh look
at the design of a forecasting system based on in-situ
data. Preliminary results from the GTG2 integration are
presented here, as well as future research directions.

2. THE GTG ALGORITHM

GTG2 nowcasts and forecasts clear-air turbulence at
both mid (10000ft-20000ft) and upper levels (20000ft-
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Fi1G. 1: The GTG forecasting system and its inputs and outputs. Adapted from Sharman et al. (2005).

45000ft") in order to provide guidance for large aircraft in
cruise and short, regional flights that do not reach upper
levels.

The GTG system uses multiple diagnostics for fore-
casting (see Sharman et al. (2005) for a description of
the diagnostics). While GTG is not the only forecasting
system to use multiple diagnostics together, it is the only
one to combine them dynamically at forecast time. The
set of diagnostics is different for mid-levels and upper lev-
els due to the forecast skill of different diagnostics for
certain mechanisms of turbulence creation. GTG com-
bines these values dynamically at every forecast hour us-
ing a fuzzy logic algorithm that weights each diagnostic
according to agreement with current turbulence obser-
vations (PIREPS) to produce a turbulence forecast. If
there are not enough PIREPs at the time of the forecast,
climatologically-derived weights are used. Thus, GTG
can handle the expected variations in observational data.

Figure 1 is a schematic of the GTG forecasting sys-
tem. GTG uses the National Center for Environmen-

*Mid and upper levels are fight pressure altitudes or fight
levels, which are isobaric surfaces corresponding to a particu-
lar geopotential altitude according to the U.S. Standard Atmo-
sphere.

tal Prediction’s (NCEP) operational Rapid Update Cycle
(RUC) weather model output (20km resolution) as a rep-
resentation of large-scale atmospheric processes. Pilot
reports and cloud-to-ground lightning flash data from the
National Lightning Detection Network (to filter out turbu-
lence reports near convection) are used as observational
data inputs. The majority of the processing takes place in
the ‘GTG Nowcast and Forecast Generator’ box.

The GTG nowcast and forecast generator is detailed
in Sharman et al. (2005), but briefly works as follows. Ev-
ery hour, GTG receives RUC model output files, NLDN
lighting data, and PIREP data. From the RUC model out-
put variables in the analysis-time file, GTG calculates val-
ues for ten diagnostics for upper-levels and nine diagnos-
tics at mid-levels. Each diagnostic value D is calculated
for each RUC grid point.

The diagnostic values and observation data
(PIREPs) both must be mapped to a common value
range for comparison. For each diagnostic D, the
values are mapped to a turbulence scale using a set of
established thresholds for the diagnostic. Thresholds
were derived from a one-year study of 18Z 6-hr forecasts
and represent the medians of the raw diagnostic values
corresponding to each major PIREP turbulence category.
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FiG. 2: A sample of the GTG 6-hour forecast for the CONUS available on the Aviation Digital Data Service site,

http://adds.aviationweather.gov/turbulence.

The five thresholds (T1,T2,T3,T4,T5) correspond to null,
light, moderate, severe and extreme turbulence cate-
gories in PIREPs. Using the thresholds, raw diagnostic
values are mapped to the range 0 < D < 1. T1(null) is
0, T2(light) is .25, T3(moderate) is .5, T4(severe) is .75,
and T5(extreme) is 1. Thus, for a diagnostic, raw values
below T1 are scaled to 0, values between T1 and T2 are
scaled linearly to 0-.25, values between T2 and T3 are
scaled linearly to .25-.5, and so on.

Pilot reports (PIREPSs) for 90 minutes before and af-
ter the analysis time are linearly mapped from a range
of 0 < p < 8toarange of 0 < p < 1 to enable direct
comparison to mapped D, values. PIREP locations are
mapped onto the RUC grid that has been interpolated to
flight level. If there is more than one PIREP located in a
single RUC grid cell, the pilot report with the highest tur-
bulence intensity is used and the others in that grid cell
are ignored. PIREPs coincident to lightning reports (cur-
rently, within 20 minutes and 50km) are ignored in order
to isolate clear-air turbulence reports from reports of tur-
bulence from other sources.

Each remaining PIREP is matched by location with
ten diagnostic values for upper-levels or nine diagnostic
values for mid-levels. The diagnostics are then scored

according to their agreement with PIREPs. If both the
PIREP and a diagnostic are above or below a certain
threshold — for GTG2, the threshold used is 0.375 — they
are considered in agreement. The threshold corresponds
to a moderate PIREP turbulence intensity report, thus
defining the class separation between null reports and
Moderate or Greater (MOG) reports. Counts of obser-
vation and diagnostic agreement (correct and incorrect
classifications by each diagnostic) are tallied in a contin-
gency table for each diagnostic. The Probability of De-
tection (POD) of a MOG event, POD-Yes (PODY) is the
fraction of correct MOG classifications out of all MOG
observations. Likewise, POD-No (PODN) is the fraction
of correct null classifications out of all null observations.
From PODN and PODY values, the diagnostic’s True Skill
Score(TSS) is calculated:

TSS = PODY + PODN — 1 (1)

Low levels of atmospheric turbulence are expected at any
given time (see Section 3). Therefore, it is important to
include the volume of forecasted MOG turbulence when
scoring a diagnostic. Both fuoc and TSS are used to cal-
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This sum is GTG’s turbulence nowcast for the analysis
time. This weight vector is then applied to each RUC
model forecast output (3,6,9,12 hour forecasts) to pro-
duce turbulence forecasts for each forecast time. An ex-
ample of GTG’s output, made into an image by the Avia-
tion Digital Data Service (ADDS), is shown in Figure 2.

3. IN-SITU TURBULENCE MEASUREMENT AND RE-
PORTING SYSTEM

In-situ turbulence measurements are data recorded by
special software on commercial aircraft during flight. This
measurement and reporting system was developed at
NCAR under FAA sponsorship in order to augment or re-
place PIREPs with a data source that has more precise
location and intensity data. Insitu measurements use ex-
isting aircraft equipment and are reported using existing
communications networks. Detailed coverage of in-situ
data methods can be found in Cornman et al. (2004) and
Cornman et al. (1995).

The in-situ-derived turbulence metric is the eddy dis-
sipation rate (EDR), ¢3. EDR is recognized as an objec-
tive measure of atmospheric turbulence intensity (Panof-
sky and Dutton, 1984). Two methods to estimate €% on-
board aircraft were developed: the accelerometer-based
method and the vertical wind-based method. Both are
aircraft-independent measurements, and both result in
approximately the same turbulence measurements. As
an example, the accelerometer-based method uses air-
craft vertical acceleration data to estimate eddy dissi-
pation rate through an aircraft vertical-acceleration re-
sponse function describing how a particular aircraft re-
sponds to gusts. The response function considers the
vertical motion and pitch of the aircraft, various wing lift
forces, etc., and can be mathematically modeled or ob-
tained from the manufacturer or simulation studies. Cur-
rently, only the accelerometer-based method is in use,

in United Airlines 737 and 757 aircraft. Southwest Air-
lines and Delta Airlines are scheduled to use the wind-
based method when the system is deployed in their air-
craft, which is expected to happen by the end of the year.

EDR data is reported once a minute except dur-
ing takeoff and landing, when data is reported more fre-
quently depending on rate of altitude change. Each in-
situ data report is a location (latitude, longitude, altitude)
and a set of statistics about various turbulence levels cal-
culated from a number of EDR measurements taken on-
board during that minute. The set of statistics are the me-
dian eddy dissipation rate (medEDR) and the maximum
eddy dissipation rate (maxEDR). Reporting just these two
fields reduces transmission costs while still providing a
way to distinguish between discrete and continuous tur-
bulence events. The medEDR is the median value of a
time series. The maxEDR value is the 95% value of the
time series; as a protection measure against erroneous
data, peak values are not used. Due to transmission
costs, both values are binned into 1 of 8 bins, and each
possible pair of maxEDR/mIinEDR values for a minute is
mapped to a single 8-bit character and then downloaded
off the aircraft as the EDR data for that minute. The num-
ber of bins was limited by the available character sets,
but a newer version of the algorithm now in development
compresses the EDR data to enable more bins and thus
a higher resolution of data.

Currently, in-situ data is being downloaded from 89
United Airlines 757 aircraft. The software is installed on
96 757s and 101 737s. A snapshot of currently available
in-situ data is shown in Figure 4. Only a fraction of the
null reports are plotted, for clarity.

In-situ data is thought to better reflect the actual
amount of turbulence in the atmosphere (Dutton, 1980;
Sharman et al., 2005). Figure 3 shows that over 99%
of in-situ reports are reports of null turbulence. At any
time, at most 0.01% of the atmosphere at upper levels
should contain MOG turbulence. In contrast, about half
of PIREPs report null turbulence, 27% report light, 17%
report moderate and 1% report severe; thus, pilots sub-
stantially underreport the null events. In-situ data over-
comes this uncertainty by reporting data every minute
during flight.

4. THE USE OF IN-SITU DATA IN GTG

The planned release schedule necessitated that the in-
corporation of in-situ data into GTG2 remain quite sim-
ple. Our trials involve replacing PIREPs with in-situ data
and how to best merge both data sources together. In
addition, we've investigated issues in forecast verification
using both in-situ and PIREP data as verification data.

4.1 Forecast Verification

This investigation followed the verification practices of
the TPDT team, covered in (Takacs et al.,, 2004;

Brown and Young, 2000; Brown et al., 1997), but ex-
plained briefly here. First, a forecast is verified against
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FiG. 3: Taken from Sharman et al. (2005). Distribution of binned ¢3 median (lower bar) and peak, i.e. 95th percentile,
(upper bar) values from United Airlines 757 aircraft over a three month time period using the accelerometer-based

method described fully in Cornman et al. (1995);

Cornman et al. (2004). The open circles are estimates of the

distribution based on an assumed lognormal distribution with parameters derived from the RUC20 model (Frehlich and
Sharman, 2004). The difference may reflect the ability of commercial air carriers to successfully avoid turbulence.

observational data; a 6-hour forecast at 12 UTC, for in-
stance, has a valid time of 18 UTC and would be verified
against observations from 18 UTC. Forecast points are
matched with observations by location as described in
Section 2. As the primary verification metric, we use the
Receiver Operating Characteristic Curve (ROC) curve:
the class separation threshold between null and MOG
turbulence is varied over a range of 0 to 1, producing a
curve of PODY/PODN pairs for that diagnostic (or group
of diagnostics, as in the GTG forecast). The curve mea-
sures the ability of a forecast algorithm to discriminate be-
tween MOG and null turbulence observations. When the
threshold is near 0, PODY will be high because almost ev-
ery observation and almost every forecast value is clas-
sified as MOG. The high PODY value reflects the high
level of agreement between the two. When the thresh-
old is near 1, PODN will be high and PODY will be low
by the same logic. Higher PODY-PODN combinations
over the range of thresholds — producing a larger area
under the ROC curve - implies greater classification skill.
An area under the curve (AUC) of .5 implies no skill (no
greater than chance) and an AUC of 1 implies perfect
forecasting/classification skill. Background on the use of
the ROC curve and AUC as a discrimination metric can
be found in (Mason, 1982; Hanley and McNeil, 1982;

Marzban, 2004; Kharin and Zwiers, 2003). Observations
in the ‘light’ turbulence category (0 < p < 0.375) are gen-
erally left out of the verification process due to their higher
level of uncertainty, however, they were included in some
results below because (1) the first in-situ intensity bin is

thought to include light turbulence and (2) it is unknown
which bin(s) fully capture light turbulence intensity .

4.2 Forecasts Using Only In-situ Data

The first attempt at incorporating in-situ data into GTG2
strived for simplicity: GTG used in-situ data as an ob-
servational data source, replacing PIREPs (see Figure
1), but the GTG algorithm remained unchanged. Peak
(95%) in-situ turbulence intensities were used instead of
median intensities in order to have more non-null turbu-
lence data points available for the GTG forecast. Despite
the large difference in turbulence intensity distributions
between the two data sources, GTG's scoring algorithm
(see Section 2) is robust enough to handle both.

This simple approach had two main drawbacks.
First, we ignored any additional knowledge about the tur-
bulence we could have derived from the in-situ data (i.e.,
an estimate of the size of the turbulent area from a cluster
of non-null readings, whether the encounter was discrete
or continuous by examining both the median and the peak
reading). Second, the scaling of diagnostics essentially is
‘calibrated’ for PIREPs, and in-situ data is on a different
scale with no clear mapping to PIREP turbulence intensi-
ties as of yet (work on this question is ongoing).

Despite these drawbacks, the results were positive.
When the forecasts were verified against in-situ data,
forecasts over three winter months of 2004 and 2005
showed similar or improved forecasting accuracy of in-
situ data over PIREPs. Due to uncertainty in how in-situ
data turbulence intensities map to PIREP turbulence in-
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FiG. 4: A snapshot of the in-situ data currently available from United 757 aircraft. The vast majority of data points are
reports of null turbulence, so only a sample of those are plotted. Every report > .05 is represented by a square. The
GTG PIREP-based forecast is shown in the background.



o
S
«©
<]
©
S
>
o
o
a
<
-
B PIREPs
o | @ Insitu
o
o
S
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
PODN

FiG. 5: ROC curves for four winter months (2004-2005) of mid-day 6-hour forecasts made with PIREPs only (blue)
and in-situ data only (green). In-situ data was scaled using mapping 1. The in-situ forecast shows increased forecast
skill. Here, all PIREP or in-situ intensities were included in the verification (i.e., light reports were not excluded). The
AUCs for the PIREP forecast and in-situ forecasts were 0.753 and 0.821, respectively. (The analysis-time (nowcast)
AUCs were 0.781 and .878, respectively.) The large point on each curve marks the highest (PODN,PODY) pair and can
help identify the optimal threshold.



tensities, as mentioned above, we tried several different
mappings. The mappings are shown in Table 1. Most
mappings resulted in roughly equivalent forecasting ac-
curacy to PIREP forecasts. However, two mappings did
show some improvement in forecast skill. Mapping 1 in
Table 1 produced a larger AUC (when including lights)
than did the equivalent PIREP forecast (0.821 vs. 0.753,
respectively). As an example, Figure 5 shows the ROC
curves for that trial. However, when excluding lights, map-
ping 1 did not perform significantly better than the equiv-
alent PIREP forecast. When the raw in-situ values (rang-
ing from .05 to .75) were unchanged, we also saw an
improvement in forecasting accuracy. When excluding
light turbulence, the AUC for the original PIREP forecast
is .80075 (verified by PIREPSs); the AUC for the in-situ
forecast is .8399 (verified by in-situ data). When including
light turbulence, the PIREP forecast AUC dropped to .753
(as seen above) but the in-situ forecast AUC remained
almost exactly the same. When the same in-situ fore-
cast was verified against PIREPs, the AUC lowered to
.7866. When the PIREP forecast was verified against in-
situ data (excluding lights since PIREP light turbulence
intensity value is known), the AUC ranged from .755 to
.81 (depending on which in-situ mapping was used). We
found from the trials that adjustments in mapping — effec-
tively interpreting the in-situ values as different levels of
turbulence intensity — significantly affected the resulting
forecast. Additionally, it appears that the type of verifica-
tion data used affects the forecast’s perceived skill.

Another way to look at a forecast’s discrimination skill
is the difference in the medians of the probability density
functions of null and MOG turbulence categories. Figure
6 plots the probability density functions of null and MOG
turbulence categories for forecasts using only PIREPs
and for forecasts using only in-situ data, respectively. The
forecast using in-situ data has a larger difference in the
medians of the two categories than does the PIREP fore-
cast (.27 vs. .22, respectively), indicating a better dis-
crimination skill.

4.3 Forecasts Using Both PIREPs and In-situ Data

The next step in investigating simple incorporation of in-
situ data into GTG2 was to use both PIREPs and in-situ
data as observational data inputs. In each of these trials,
the PIREP data points were scaled linearly between 0
and 1 as in the original GTG algorithm, and in-situ data
points were scaled between 0 and 1 according to one
of several different mappings. The mappings are shown
in Table 1 (Mapping 1 was not used because it did not
perform well when lights were excluded, and it was not
seen as providing the best interpretation of in-situ data).
The AUCs for each trial are shown in Table 2.

In these trials, we verified each forecast against
PIREPSs, in-situ data, and against both sources merged
together. The AUCs were slightly lower when the fore-
casts were verified with both sources. The only improve-
ment in forecast skill was shown when the ‘no-scaling’
forecast was verified against in-situ data only.

A further analysis of the data sources and the GTG
algorithm can shed light the results thus far. First, PIREPs
and in-situ data do not agree 100% (see Section 3); ob-
servations of each type from the same flight can vary in
location and time, PIREPs can disagree with each other
about 15% of the time, and the proper mapping of inten-
sities between the two is still being investigated. Thus,
we expect that some observations coincident in space
and time might contradict each other (this has been seen
anecdotally), and this would lower the forecast's verifica-
tion score. The PIREPs and in-situ data together, when
treated as a single observational data set, essentially
has a higher error rate than either type of data alone.
The diagnostics typically are smooth both horizontally
and vertically (Sharman et al., 2005), so contradictory
observations in neighboring RUC grid cells can cancel
out a diagnostic’s positive forecast skill score. We also
acknowledge that current interpretation of in-situ turbu-
lence intensity (mappings) could be treating some cases
of PIREP/in-situ agreement as contradictions.

Second, the GTG algorithm gives equal weight to
the MOG forecasting skill and the null forecasting skill
of each diagnostic, regardless of the number of obser-
vations available in each category. PIREPs tend to dom-
inate the MOG category while in-situ data dominates the
null category. An analysis of the set of observational data
used by GTG (as opposed to the superset of data avail-
able to be used) over a month of two mid-day forecasts
where both PIREPs and in-situ data were available re-
vealed that while there were far fewer PIREPs used for
each forecast hour (medians of 5835 in-situ observations
and 202 PIREP obervations), PIREPs were overwhelm-
ingly the source of MOG turbulence observations for the
scoring step of the GTG algorithm (median of 53 MOG
PIREPs per hour and 0 in-situ MOG reports per hour.
There were 23 MOG in-situ reports for the month). Like-
wise, the number of in-situ data null reports was much
greater than the number of PIREP null reports used per
forecast hour (medians of 5834 and 140, respectively).
Thus, the effect of adding a much higher-resolution and
more accurate data source is tempered by the way GTG
computes a forecast. The majority of the in-situ-only fore-
cast trial improvement shown above probably came from
an improvement in the PODN scores of the diagnostics.

At this time, we believe is is best to verify a fore-
cast against in-situ data only for two reasons. First, there
are more observations available every hour. While over
99% are observations of null turbulence (Figure 2), it is
accepted that the majority of the atmosphere is not tur-
bulent (Sharman et al., 2005) and a low volume of turbu-
lence is desired in turbulence forecasts (eqn. 2). Second,
in-situ data is believed to be more accurate than PIREPs
for reasons outlined in Section 3.

5. FUTURE DEVELOPMENT

Clearly, the above experiments are merely first attempts
at examining the behavior of GTG with in-situ data. We
have both short-term and long-term plans for the use of
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distributions, indicating better discrimination skill.

in-situ data.

5.1 Next Steps

Our next step is to examine the performance of the diag-
nostics and their re-mapping thresholds with in-situ data.
Preliminary work on this revealed that the rank order of
best-performing diagnostics changed only slightly when
in-situ data was used for verification instead of PIREPs.
However, the individual forecasting performance of most
diagnostics did vary. This result is not surprising, as most
diagnostics were developed using PIREPSs for verification.

Along with the diagnostic re-assessment comes the
re-assessment of the diagnostic thresholds. Recall that
the values of each diagnostic are remapped to a 0 to
1 scale, specifically developed for that diagnostic using
PIREPs. A diagnostic has a certain range of possible val-
ues, and what values in that range correspond to mod-
erate or severe turbulence can only be determined by
comparison to observations. A preliminary look at di-
agnostic values compared to in-situ observations reveal
that the current thresholds need to be adjusted, at least
for moderate and severe turbulence intensities. Addition-
ally, whether to have one set of diagnostics thresholds for
both PIREPs and in-situ, or a specific set of thresholds
for each, needs to be determined.

5.2 Future Plans

The team’s longer-term plans anticipate a redesign of the
GTG algorithm. This redesign could take many forms.
Currently, there are several possibilities being investi-
gated. First, with the much greater amount of in-situ data,

regional forecasts should be possible. GTG currently
makes one forecast for CONUS between 10000-20000ft
and one for 20000-45000ft due to the limited number of
PIREPs available per hour to score diagnostics, despite
the knowledge that mechanisms of turbulence are differ-
ent in different geographic regions and within the mid-
and upper-level bands. With regional forecast areas, fore-
casts can be tailored to the specific turbulence profile of
the area by the choice of diagnostics. Individual forecast
regions may be defined by geography, such as the Rocky
Mountains, by vertical level, or by atmospheric feature,
such as a front or the jet stream. Algorithms exist to iden-
tify these features from NWP model variables (Hewson,
1998).

In-situ data is not only more plentiful, but it can give
more information about the turbulent area than does a
PIREP. Each in-situ report contains both median and
peak intensity value. A report with a large difference be-
tween the median and peak intensities can indicate a dis-
crete turbulence event (i.e., a single jolt or bump). Like-
wise, a report with similar median and peak intensities
can indicate a continuous event, especially if several con-
secutive reports are alike. GTG currently does not have
any way to consider this additional information in the scor-
ing. How to use this additional information is also a ques-
tion. Knowledge about a turbulent event could be used
to make judgements on the accuracy of a neighboring
PIREP, or to place some confidence level on the in-situ re-
port (i.e., in most cases one discrete report is more likely
to be erroneous than several consecutive reports of non-
null turbulence) and factor that confidence level into the
diagnostic scoring procedure.



Table 1: Mappings of raw in-situ intensity (binned) values to the value range used by GTG (0 to 1). One trial involved

no change to the raw in-situ values (‘no-scaling’ trial).

[ In-situ raw value || Mapping 1 | Mapping 2 | Mapping 3 ||

0.05 0 0 0

0.15 0.2 0.25 0.25
0.25 0.4 0.50 0.25
0.35 0.6 0.75 0.50
0.45 0.8 1.0 0.5
0.55 1.0 1.0 0.75
0.65 1.0 1.0 0.75
0.75 1.0 1.0 1.0

Parallel to the research on how to best use in-situ
data is the choice of combinatorial algorithm to possibly
replace the fuzzy logic algorithm currently used in GTG.
The fuzzy logic algorithm was designed to be robust for
the sparseness of PIREPSs, but in-situ data is much more
plentiful. Other algorithms such as logistic regression,
neural networks and decision trees have been applied ot
the CAT forecasting problem but required more training
data than was available with PIREPs to outperform the
fuzzy logic algorithm (Sharman et al., 2005). These al-
gorithms as well as other machine learning techniques
will be researched as possible replacements to the fuzzy
logic algorithm, in the pursuit of a more accurate turbu-
lence forecast.

6. CONCLUSION

In an effort to continue improving CAT turbulence fore-
casting accuracy, NCAR/RAL and the FAA have devel-
oped a new, more objective and higher-resolution method
to measure atmospheric turbulence: in-situ data. This pa-
per covers the first attempts at integrating in-situ data into
the current turbulence forecasting product, GTG2, without
making changes to the forecasting algorithm. Including
in-situ data as an observational data source in GTG2 ei-
ther alone or combined with PIREPs did not significantly
reduce the forecast accuracy; in some cases, it increased
the forecast accuracy. Forecast perceived skill depended
on the data used for verification; combining PIREPs and
in-situ data reduced forecast perceived skill because of
the inconsistencies between the two data sources. A
fundamental issue is the mapping between PIREP tur-
bulence intensity and in-situ turbulence intensity, which
is still being investigated so it is unknown exactly how
to interpret in-situ intensities. Another main factor limit-
ing performance increases is the diagnostic thresholding,
which was developed for PIREPs. Preliminary work has
begun to develop new thresholds for diagnostics using in-
situ data.

GTG2 was designed when PIREPs were the only
choice in observation data, and as such it does not take
advantage of any of the additional turbulence information
or resolution of in-situ data. Plans to investigate ways to

take advantage of the accuracy and resolution of in-situ
data, and alternatives to the fuzzy logic algorithm, were
discussed.
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