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1.  Introduction 
 
Jorgensen and Klein (1969) demonstrated a 
method to produce probabilistic quantitative 
precipitation forecasts (PQPFs) based on seasonal 
average climatological precipitation amounts and 
precipitation probabilities.  Based on 15 years of 
data, they computed tables of the probabilities to 
exceed certain seasonal precipitation amounts at 
108 stations across the conterminous United 
States.  Those tables display unconditional 
probabilities that include both rain and no rain 
cases and also conditional probabilities that include 
data for only days when rain occurred. The latter is 
of most interest since it can be combined with the 
forecast probability of rain to produce an 
unconditional Probability of Exceedance (POE) for 
arbitrarily selected rainfall amounts.   
 
Wilks (1990) used a similar approach to produce 
PQPFs (or POEs) using probabilities of 
precipitation (PoPs) together with climatological 
distributions of precipitation amounts, also based 
on the condition that rain occurred.  Wilks 
concluded, “PQPFs could be more skillful than 
previous experience has indicated if appropriate 
climatological distributions of conditional 
precipitation amounts were to be consulted as one 
element of the guidance.”   
 
Additional information and work on probabilistic 
quantitative precipitation forecasts can be found in: 
Hashemi and Decker, 1969; Hughes, 1980; Wilks,  
1990; Krzysztofowicz, 1993; Sigrest, 1998; 
Applequist, 2002; Cope, 2004 and others. 
 
Unfortunately, climatologies are averages of a 
diverse spectrum of rainfall events, with varying 
precipitation means and distributions.  This 
diversity is observed not only on an annual time 
scale but also on a seasonal scale.  Therefore, a 
single climatology, even for a season, frequently 
does not represent the variety of events that occur.  
It should be better to forecast the appropriate 
distribution for the expected event, and then 
compute the PQPFs from those distributions.  The 
National Weather Service Forecast Office (WFO) in 
Tulsa, Oklahoma is analyzing this method.   
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This paper describes an attempt to further the work 
of both Jorgensen and Klein (1969) and also Wilks 
(1990).  Assuming the distribution of rainfall 
observations across a given area, from a typical 
precipitation event, can be represented reasonably 
well by an exponential probability density function 
(PDF) with a given mean, then the probability to 
exceed a particular rainfall amount can be 
calculated.  This Probability of Exceedance (POE) 
is the probabilistic QPF produced at WFO Tulsa.   
 
The Tulsa method produces POEs using four 
terms: 1) the probability density function (PDF) of 
the exponential distribution; 2) WFO generated 
QPFs that are used for the mean of the PDF; 3) 
WFO generated PoP; and 3) software in the 
Gridded Forecast Editor (GFE, Global Systems 
Division, 2005).   A description of the Tulsa method 
is discussed along with comparisons to the work of 
Jorgensen and Klein.   
 
Examples of graphic products are described and 
shown below.  An example of a text product is also 
shown, which includes specific average POEs for 
one of the 32 counties across the Tulsa County 
Warning and Forecast Area (TSA CWFA).   
 
2.  Mathematical Background 
 
This formula-based method of producing POEs is 
based on the assumption that the distribution of 
given precipitation amounts can be approximated 
by the gamma distribution.  Wilks (1995) states,  
“the versatility in shape of the gamma distribution 
makes it an attractive candidate for representing 
precipitation data, and it is often used for this 
purpose.”  The gamma function is shown in 
Equation (1).  A brief mathematical explanation is 
provided here.   
 
Г(α) = ∫x(α-1) e-x dx      (1) 
 
,for α > 0,  integrated from 0 to ∞. 
 
The gamma distribution takes on several different 
shapes, as shown in Figure 1, depending on the 
values of the shape parameter alpha (α).   
However, based on climatology, an appropriate 
distribution for most precipitation events is where 
alpha is equal to 1.0.  In this case, the frequency of 
small rainfall amounts is highest, with a rapid 
decrease in frequencies of higher amounts.  Where 
α= 1, the gamma distribution simplifies to a special 
distribution called the exponential distribution which 



can be used in producing the POEs.  The density 
function of the exponential distribution is defined by 

Equation (2), where the mean value of the 
distribution is given by µ (Mu).  

 
 

 
Figure 1.  Examples of gamma PDF, where alpha = 1 (blue line), 2 (red line), 3 (black line), from 
Engineering Statistics Handbook (2005) 

f(x)  =    (1/ µ ) *  e-x/µ    (2) 
       , where µ is the mean 
 
Integrating (2) yields the cumulative density 
function (Equation 3), where the POE can be 
computed for any selected rainfall amount, x.  (A 
more rigorous explanation can be found in a 
number of statistics books, such as Wilks (1995)).  
 
 

POE(x)  =    e-x/µ     (3) 
 
Examples of the exponential PDF are shown in 
Figure 2 for a variety of means.  Note, as the mean 
increases, the PDF becomes “flatter” with a larger 
area under the right tail of the PDF.  This indicates 
that events with higher average rainfalls will have a 
higher frequency of larger individual rainfall 
amounts, and therefore higher POEs for large 
rainfall amounts. 
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Figure 2.  Exponential density functions for varying means (Mu).  For larger means, the decline in the 
number of rainfall amounts is less dramatic, indicating a greater frequency of heavier amounts. 

 



 
Table 1 contains examples of POEs, using 
Equation (3), for certain threshold QPFs with 
different mean values.  POEs in the table are 
conditional upon the occurrence of rain.  The 
reader will notice that the probability for attaining 
the mean value is less than 50%.  This is a 
characteristic of the exponential distribution.  The 
third line in Table 1 provides a good example.  The 

mean on that line is 0.50 inches, yet the POE for 
0.50 inches is only 36.8%.  Since the exponential 
distribution is skewed strongly toward lower values, 
the mean and median are not the same.  The mean 
value will be higher than the median.  More robust 
explanations can be found in statistics textbooks, 
such as Walpole and Myer (1978). 

 

Table 1.  The table shows examples of POEs for different mean values, given a PoP of 100%. 

  Mean QPF(in.) POE(.10) POE(0.25) POE(0.50) POE(1.00) POE(2.00) 

0.10 0.368 0.082 0.007 0.000 0.000

0.20 0.607 0.287 0.082 0.007 0.000

0.50 0.819 0.607 0.368 0.135 0.018

0.75 0.875 0.717 0.513 0.264 0.069

1.00 0.905 0.779 0.607 0.368 0.135

1.50 0.936 0.846 0.717 0.513 0.264

2.00 0.951 0.882 0.779 0.607 0.368

2.50 0.961 0.905 0.819 0.670 0.449
 
 
 
3.  Examples of Rainfall Frequency 
Distributions 
 
Plots of precipitation data for a ten-year period from 
1995 through early 2005 for sites in the TSA CWFA 
match the shape of the exponential distribution 

rather well.  Figure 3 shows12-hour rainfall data 
plots for two sites in the TSA forecast area.  It can 
be seen that the distribution of rainfall amounts in 
each 0.05-inch category bin decreases rapidly as 
the amounts increase. 

 

 
Figure 3.  Rainfall frequency distributions from 1995 through early 2005 for Tulsa, OK (TUL), Fort 
Smith, AR (FSM).  Frequencies are for 0.05 inch categories. 

 



While the exponential distribution is valid as a 
composite of events, is it also valid for individual 
rainfall events?  Figure 4 shows 86 individual 12-
hour rainfall events in the Tulsa WFO forecast area 
from mid summer to early autumn 2005.  (A 12-
hour rainfall is defined here as any 12-hour period 
where measurable rain occurred anywhere in the 
WFO TSA forecast area.  For the period described, 
140 events were possible.)  The consistency in the 
shape of the plots would indicate that the 
exponential distribution also applies to individual 
events.  Even larger and heavier rainfall events, as 
shown in Figure 5, are reasonably represented by 
the exponential distribution.  However, further 
analysis and study of a wider variety of events, 

particularly winter events, would be prudent, as 
more appropriate distributions may be required for 
some events, depending on the synoptic scale 
influences.  
 
The data for Figure 4 are human quality controlled 
quantitative precipitation estimates from the NWS 
Arkansas Red Basin River Forecast Center in 
Tulsa, Oklahoma.  These data analyses are 
performed hourly on a 4x4km grid that covers the 
Tulsa WFO forecast area.  Each 4x4km grid is 
effectively considered a rain gage.  The hourly 
analyses are summed over 12-hour periods and 
grouped into 0.05 inch categories to create the 
frequency distributions in the figure.
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Figure 4.  Rainfall distributions for 86 individual 12-hour rainfall events in the TSA forecast area. 
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Figure 5.  Non-typical exponential distribution of rainfall for an event in eastern Oklahoma. 



 
4.  The Forecast Process 
 
WFO meteorologists already forecast all the 
necessary parameters for the production of POEs.  
No additional workload is required.  In fact, the 
process of producing the grid files, products and 
graphics is automated within the GFE.  Forecasters 
create their PoP and QPF forecasts, as they 
currently do.  Then, GFE calculates the POE grid 
fields for threshold rainfall amounts of 0.10, 0.50, 
1.00 and 2.00 inches.  
 
During the development phase of the Tulsa 
Method, the type of POE had to be determined.  
Would it be conditional (based on the occurrence of 
rain), or unconditional (independent of the 
occurrence of rain).  Following the lead of 
Jorgenson and Klein, it was decided to produce the 
unconditional POE (uPOE).  Equation (3) is then 
used to calculate the POE based on the mean (µ) 
rainfall amount based on the condition that rain 
occurs.  That results in a conditional POE.  The 
uPOE is then simply the product of the conditional 
POE and the NWS PoP as shown in Equation (4).    
 
uPOE(x)  =   ( e-x/µ  ) * PoP   (4) 
 
This solved an interesting problem.  When 
calculated, conditional POEs frequently exceeded 
the standard PoP for that same period, since the 
value of µ is based on the condition that rain 
occurs.  As an example, given that rain occurs, the 
conditional POE for 0.10 inches of rain may be 
80%.  However, the NWS PoP to measure 0.01 
inches of rain may only be 30%.  This might be 
confusing to the less sophisticated user.   
 
One last obstacle had to be overcome.  NWS QPF 
forecasts are unconditional, i.e., they are areal 
average amounts a forecaster expects when all 
gages are considered, including the ones that 
recorded no rain.  Therefore, the NWS QPF needs 
to be converted to a conditional QPF, which is the 
value of µ used in Equation (4).  Within the GFE, 
Equation (5) accomplishes this.  This is also 
consistent with the work of Jorgenson and Klein.   
 
µ = Conditional QPF   
   =  (unconditional QPF) / PoP     (5) 
 
The critical element to the entire process is the 
QPF supplied by the forecasters.  That QPF is 
substituted for µ and changes the shape or 
“steepness” of the exponential PDF, thereby 
changing the resultant POEs.  This step in the 
process takes advantage of a forecaster’s 
expertise to identify events that may not match the 
“average” for that season.  This should provide for 
much more accurate POEs than can be computed 
by simply using the seasonal mean as offered by 

Jorgenson and Klein.  Events not typical for the 
season will likely depend on the nature of the event 
(convective or non-convective). 
 
After GFE performs the calculations using 
Equations (4) and (5), all output products are 
generated.  The forecasters may then choose to 
alter the POEs, although that is not expected to 
happen very often.  Verification and feedback to 
the forecaster should help determine if and when 
these adjustments will add value.   
 
5.  Comparisons to Previous Work 
 
Jorgenson and Klein (1969) derived Equation (6), 
which defines the unconditional probability to 
exceed a certain amount of rainfall (r), for a given 
event.  Pt(r/0.01) is the conditional probability that 
an amount greater than “r” will occur, and is 
provided in the tables they compiled for 108 
stations across the conterminous United States.  
P(0.01) is the probability of measurable rain (0.01 
inches), which is the standard NWS PoP.  An 
excerpt is provided in Appendix A.  
 
Pt(r, 0.01)  =  Pt(r/0.01)  *  P(0.01)    (6) 
 
Jorgenson and Klein provided the following 
example where they compute the unconditional 
probability to exceed 0.50 inches of rain, based on 
a PoP of 60%.  “Consider, for example, the 
problem of determining the probability of .50 inches 
or more of rain in the ‘tonight’ period for Atlanta 
during the spring months.  Assume that the public 
probability forecast has assigned a .60 probability 
to the event of measurable precipitation for ‘tonight’ 
(00Z-12Z for Atlanta), so that P(.01) is .60.  The 
data in table 1 provide the conditional probability 
P(.50/.01) = .27.  Substituting into equation ([6]):  
 
Pt(0.50/0.01)  =  Pt(0.50/0.01) * P(0.01)  

=  0.27 * 0.60  =  0.16  (7) 
 
 The desired probability is then 0.16.” 
 
The rainfall mean for a 12-hour, spring event in 
Atlanta, obtained from the Jorgensen and Klein 
table is 0.36 inches.  By substituting 0.36 for µ and 
using a PoP of 60% in equation 4, the Tulsa 
method yields the following:  
 
uPOE(x)  =    (e-x/µ  ) * PoP   (8) 

=  Exp( -.50/.36) * 0.60  =  0.15 
 
The results of equations (7) and (8) are remarkably 
close.  Table 2 shows other examples, given a PoP 
of 100%.  Not all values are as close as the above 
example, but the results are probably well within 
the forecast errors of both the QPF and the PoP.  

 



 

Table 2.  Sample POEs for 0.25 and 0.50 inches as taken from Jorgenson and Klein (J&K)  and also 
calculated from uPOE equation (6) using 100% for the PoP.  Average difference between methods 
was 3.38%.  A maximum difference was 8% at Detroit and Fort Worth. 

City Mean J&K(.25) uPOE(.25) J&K(.50) uPOE(.50) Avg Diff 
Detroit (winter) 0.11 13% 10% 4% 1% 3.00% 
Detroit (spring) 0.14 22% 16% 6% 3% 4.50% 
Detroit (summer) 0.25 29% 37% 16% 14% 5.00% 
Detroit (autumn) 0.20 26% 28% 11% 8% 2.50% 
       
Fort Worth (winter) 0.19 24% 27% 11% 7% 3.50% 
Fort Worth (spring) 0.39 47% 53% 27% 28% 3.50% 
Fort Worth (summer) 0.32 38% 46% 21% 21% 4.00% 
Fort Worth(autumn) 0.30 38% 43% 18% 19% 3.00% 
       
Atlanta (winter) 0.30 37% 43% 19% 19% 3.00% 
Atlanta (spring) 0.36 44% 50% 27% 25% 4.00% 
Atlanta (summer) 0.34 43% 48% 24% 23% 3.00% 
Atlanta (autumn) 0.25 34% 37% 19% 14% 4.00% 
       
Sacramento (winter) 0.24 32% 35% 14% 12% 2.50% 
Sacramento (spring) 0.19 28% 27% 8% 7% 1.00% 
Sacramento (summer) 0.11 14% 10% 7% 1% 5.00% 
Sacramento (autumn) 0.26 36% 38% 18% 15% 2.50% 
     Avg Diff 3.38% 
 
 

 
Figure 6.  Plot of data in table 2. 



 
 
 
 
 
6.  Justification for the Method 
 
Simply put, accuracy is the justification for using 
formula-based POEs.  Once the decision is made 
to provide probabilistic QPFs to the user 
community, it is incumbent upon the NWS to 
provide the best ones possible.  Using a 
forecaster’s mean QPF for µ in the exponential 
PDF rather than the climatological mean should 
result in much better POEs for those events.   
 
Figure 7 is a bar chart showing the mean 
precipitation from 86 12-hour rainfall events from 

the end of July 2005 to the end of September 2005 
(140 events possible during this time).  The 
climatological mean for that same season, based 
on the 10-year Tulsa data and also the 15-year 
Jorgenson and Klein data, is approximately 0.36 
inches, as shown by the line through the middle of 
the chart.  POEs calculated using 0.36 for µ would 
clearly have been too high.  However, POEs based 
on a forecaster’s best judgment should more 
closely match the actual means for each of those 
events and therefore should result in more 
accurate POEs.  Verification feedback and training 
is expected to make that true.  
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Figure 7.  Late summer mean precipitation for 86 events in the WFO Tulsa forecast area.  The line 
shows the climatological mean for any event. 

 
 
 
 
 
7.  Examples of POE Output 
 
POE products are both graphic and text.  Gridded 
POE within the GFE are available for 6-hour, 12-
hour, or 24-hour periods.  Figure 8 is a GFE 
depiction of the POE(0.10) for a specific 6-hour 

period.  Those grids can be output directly to the 
TSA web page or used to generate other graphics, 
such as the bar graph shown in Figure 9.  Finally, a 
text product is shown in Figure 10, depicting the 
average POEs one of the 32 counties in the Tulsa 
forecast area.   

 
 
 
 



 

 
Figure 8.  POE for unconditional probability to exceed 0.10 inches as shown in GFE graphics. 

 
Figure 9.  Bar graph output of the POE forecast for Sebastian County, Arkansas.  



 

 
Figure 10.  Text output for Tulsa County, Oklahoma, showing the PoP and QPF for each 6-hour 
period, along with the POEs for 0.10, 0.50, 1.00, and 2.00 inches of rainfall.   
 
 
8.  Summary 
Probabilistic QPFs, or probabilities of exceedance 
(POEs), are being produced at each forecast cycle 
at the WFO in Tulsa, Oklahoma.  These POEs are 
generated in the Gridded Forecast Editor and are 
unique for each grid point across the TSA forecast 
area for threshold amounts of 0.10, 0.50, 1.00 and 
2.00 inches.  The meteorologist’s unconditional 
QPF grid fields are used as input to the probability 
density function of the exponential distribution.  
Those QPFs effectively change the shape of the 
distribution so it will more closely match the 
expected distribution for the rainfall event.  
Conditional POEs are then generated for the 
specified threshold precipitation amounts.  These 
conditional POEs are then multiplied by the PoPs 
at each grid point to arrive at the final unconditional 
POEs.  This method is automated and requires no 
additional effort from the forecasters.   
 
This Tulsa method of issuing a PQPF is 
experimental and still needs to be evaluated for 
accuracy and reliability.  However, it does compare 
well with the previous results of Jorgenson and 
Klein (1969).  There is some concern that this 
PQPF method may not be entirely appropriate for 
stratiform precipitation events.   Examples of TSA 
PQPF output can be found at 
http://www.srh.noaa.gov/tsa/pqpf.htm, in both 
graphic and text modes.   
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Appendix A 

An Excerpt from Jorgenson and Klein (1969) 

This excerpt provides the statistical basis Jorgenson and Klein used for making probabilistic quantitative 
precipitation forecasts.  Their Equation (4) defines the unconditional probability to exceed a selected rainfall 
amount, r.  Table 1, to which they refer, is their tabulated data that gives the conditional probabilities of 
precipitation occurrence in seven quantitative ranges for 108 stations combined by seasons.  The Tulsa 
Method to compute POEs uses Equation (4) below.  
 
     “To obtain the probability of a precipitation event consisting of any fixed amount of rain falling in a given 
time period, we can make use of the definition of conditional probability.  The conditional probability of an 
event A given that event B will occur is  
 
 P(A/B) = P(A,B) / P(B)       (2) 
 
Where P(A/B) is the conditional probability of A, the condition being that B occurs, P(A,B) is the probability 
for the joint occurrence of A and B, and P(B) is the probability of B.    
 
     Applying this definition to a rain amount in excess of r in a period t, we write  
 
 Pt(r/0.01) = Pt(r,0.01) / P(0.01)      (3) 
 
Or 
 
 Pt(r,0.01) = Pt(r/0.01) * P(0.01)      (4) 
 
 
     The conditional probability of an amount greater than r, Pt(r/0.01), is given in table 1 for time periods of 6, 
12, and 24-hours.  The probability of measurable rain, P(0.01), is obtained from the public probability 
forecast.  The product of these two gives the desired probability.“ 


