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1.  INTRODUCTION 
 
In 1989, when the first version of the Local 
Analysis and Prediction System (LAPS) initially 
came on line (McGinley et al. 1991), the 
moisture analysis essentially modified a model 
background using Horizontal Shape Matching 
(HSM) (Birkenheuer 1996) to integrate satellite 
structure into the moisture analysis.  This 
approach was taken primarily in response to the 
fact the satellite data was from the Visible Spin 
Scan Radiometer Atmospheric Sounder (VAS) 
instrument predating the three-axis stabilized 
geostationary operational environmental satellite 
(GOES-8) that had better on-board calibration 
capabilities.  HSM was based on a minimization 
technique imposing weak constraints to merge 
satellite gradient structure with more accurate 
ground-based data.  The VAS instrument was 
poorly calibrated compared to more modern 
weather satellites, and as such, bias error was 
routinely treated in order to make best use of the 
data.  HSM was but one means of dealing with 
bias. 
 
In the mid-1990s, the moisture module in the 
LAPS system became more based on one 
dimensional variational minimization (1DVAR) 
operating at each individual gridpoint (or in the 
interest of speed, every second or third point 
using interpolation to achieve a finished product) 
to combine the diverse data sources that were 
added to the assimilation in the late 1990s and 
early 2000s.   At about this same time, GOES-8 
data products became available and it was 
assumed that these products would have 
minimal bias error due to the better onboard 
black-body calibration techniques available with 
the new satellite series.  The variational system 
at that time dropped gradient assimilation in lieu 

of directly using derived product total 
precipitable water (TPW) values in concert with 
other new moisture data sources such as global 
positioning system (GPS), GOES direct radiance 
data through the use of a newer forward model 
(community radiative transfer model, CRTM), 
and the inclusion of cloud information in the 
solution (Birkenheuer 1991). 
 
This approach to moisture analysis was deemed 
most favorable until about 2004 following an 
extensive reanalysis of the moisture data from 
the International H2O Project (IHOP)–2002 
(Birkenheuer and Gutman 2005).  It was 
observed that the published low bias figures 
from satellite product moisture used in the 
analysis system were valid for only 0000 UTC 
and that asynoptic times as well as 1200 UTC 
GPS-GOES comparisons showed much greater 
GOES moisture bias than had been perceived to 
exist.  Since modern variational methods are 
highly dependent on both bias and 
variance/covariance error statistics, this recent 
finding has far-reaching effects.   
 
There were two independent strategies to cope 
with a GOES bias problem; one was directly 
addressed by product developers (i.e., make a 
better product), and in addition, a second was to 
modify the analysis system to ignore bias and 
focus on structure in a similar way to HSM.  Both 
approaches were exclusive so the 
Environmental System Research Laboratory 
(ESRL) established a web page that compares 
the GOES product with both RAOB and GPS 
data in real-time.  This page has already 
established beyond a doubt that the GOES 
product continues to contain unexplained bias 
on the order observed during IHOP 2002.  It is 
being used by GOES product developers to 
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study and address the bias problem.  The 
following figure compares a daily difference of 
GOES and GPS data for a 12-day time series.  
A periodicity is readily seen that reinforces the 
idea that the GOES bias is best at 0000 UTC 
exactly in line with IHOP results (refer to Fig. 1), 
in addition there appears to be a regular 
synoptic variability. 
 

 
Fig. 1. GOES-GPS difference (mm “bias”) top 
and the RMS differences (mm) below from late 
22 April–8 May 2005.  The periodic nature of the 
derived moisture is evidenced in the top figure 
where “bias” values drop to near zero at evenly 
spaced intervals.  This was the identical 
behavior noted during IHOP–2002.  The 
computation here, however, is derived from 
GOES-12 and all of the GPS sites in the eastern 
half of the continental U.S., a much larger region 
than IHOP, but for a shorter time period. 
 
The second approach is the theme of this paper.  
Here is documented just how the variational 
algorithm that has served the moisture product, 
for many years has been adjusted from a 
1DVAR system to one that contains data from 
surrounding gridpoints to assimilate horizontal 
gradient information that is now automatically 
incorporated in the minimization processing.  By 
minimizing partial derivatives in orthogonal 
directions, the assimilation system both 
incorporates the gradient structure inherent in 
high-resolution satellite product data while 
becoming immune to bias problems. 
 
 
 
 
 
 
 
 
 

2.  THEORY 
 
The first modification of the functional based on 
the current LAPS 1DVAR minimization 
(Birkenheuer 2001) consists of replacing the 
earlier satellite product moisture term for 3-layer 
precipitable water (subscripted as GVAP) with 
two new gradient terms for the partial derivatives 
in the satellite data to eliminate problems with 
satellite bias highlighted (terms 5 and 6 in the 
following equation).  The premise is that adding 
gradient data from satellite image products or 
single field-of-view (FOV) sounding channels will 
be superior to supplying the measurement to the 
minimization since the bias in the product data 
(especially the single FOV data) has been 
shown to be greater than anticipated at 
asynoptic times (Birkenheuer and Gutman 
2005).  However, the single FOV data have the 
advantage of supplying greater horizontal 
structure information.  By using satellite 
gradients, the bias problem is eliminated, and 
the analysis relies on other more accurate (but 
sparser) data such as GPS integrated moisture 
for establishing the proper moisture value.  
Insertion of gradients in the system will offer the 
potential for more-detailed analysis between the 
sparser, more accurate measurements, in 
theory, but we have no experience using 
gradient data in this current context (currently 
GPS data, for example, have roughly 200 km 
separation over CONUS with better spatial 
density in other areas).  Therefore, a series of 
tests using a simple synthetic dataset was used 
to get an idea of what could be expected. 
 
The functional below is what was envisioned to 
be the new local scale 1DVAR system that 
would include features to eliminate gradient use 
in cloudy or data-missing areas.  The terms in 
blue are partial derivatives in x and y that relay 
gradient information rather than the direct 
observation from GOES to the solution,  thereby 
avoiding any bias from GOES.  This has the 
advantage of utilizing the structural information 
from GOES, while at the same time avoiding the 
moist bias problem inherent in that data source. 
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The non-gradient terms in the above equation 
are defined in Birkenheuer (2001).  The new 
gradient terms (in blue) in (1) contain variables: 
 
Sd = 1 or 0, (on or off), gradient existence check 
SGVAP = 1 or 0, (on or off) data presence check 
G(g) = cloud influence (degradation fraction, 0.0 
to 1.0) 

,x y

∆
∆

P(c,q) = variationally modified gradients, 

and 
,x y

∆
∆

Q = background gradients where c is 

the minimized variational scaling factor, and q is 
the background specific humidity 

2EGVAP = Product gradient error squared 

LGVAP = Spatial dependence, reducing influence 
at large distances (exponential decay) 
 
2.1  Testing the Formulation 
 
There are various ways to test the above 
formulation; by drawing on past experience it 
was decided the easiest approach was to isolate 
the terms of interest and perform a minimization 
analysis on an analytic function for which one 
could easily compute both “truth” and numeric 
derivatives, thus simulating and ideal setup.  
The following equation was used to simulate the 
GOES and GPS product terms in this simplified 
functional for testing; a series of numerical tests 
were conducted using the following model. 
 

2 2

( , ) (2)

( , ) 12.5 [sin ( ) sin( )] (3)
4 4

Truth data T T x y

T x y x y x y
π π

= =

= + + +

 
For this example, the sine terms were included 
to simulate variability in the field that was about 
1% of the value mid-way in the interval studied 
(1 – 50).  The testing was performed in two 
parts; first was to examine only the last two 
squared terms as the truth function, followed by 
a more complex test using the full equation that 
included the sine terms. 
 
The satellite gradient data was derived from the 
truth data with the hypothetical (best case) initial 
approximation that the satellite data was a 
perfect measurement, and that the gradient 
information were simple derivatives. 
 

( , ) 12.5 cos( ) 2
4 4

( , ) 12.5 cos( ) 2 (4)
4 4

T x y x x
x

T x y y y
y

π π

π π

∂ = +
∂
∂ = +
∂
   
 
Numerically for both the truth data and its partial 
derivatives, evaluation was performed using x 
and y as grid coordinates and placing GPS 
observations at grid locations: 
 

(5)

x i

y j

=
=

 
 
The background field for the study was initially 
set as an inferior match to the truth function: 
 

1.8 1.8( , ) (6)Background B x y x y= = +
 
 
Similarly, the background function was 
evaluated using the same method above (5). 
 
Thus, the background is not a perfect fit to the 
squared power law followed by the truth data nor 
does it reflect the sinusoidal characteristics of 
the added “structure” incorporated in the “truth” 
field. 
 
 
 



 

Furthermore, the boundary regions were ignored 
in the study of error.  In actual application, this 
same approach could be taken (i.e., not to 
include satellite gradient effects at the boundary) 
or a simple approach of replicating the gradient 
adjacent to the boundary could be applied. 
 
The minimized functional for evaluation was 
then formulated by a relationship using the 
above terms: 
 

2 ' ' 2
1 2
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2
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where the primed functions are partial 
derivatives, either numerically or analytically 
generated.  The “c” terms are empirical weights 
that control their effect relative to each other.  It 
should be pointed out that this functional differs 
from (1) in that (1) is used to minimize the best 
fit to water vapor for the operational moisture 
analysis problem.  Equation 7 on the other hand 
is only used here to examine specific terms of 
the functional in this analytic test, in particular 
the new gradient terms, to gain understanding of 
how the new derivative terms “act” with respect 
to the direct data assimilation terms such as are 
in (1).  The goal is to ascertain if the gradient 
terms should carry more or less weight in (1) 
than the conventional data terms.  The function 
p(i,j) is computed at each gridpoint to minimize 
J.  The above functional does not include GPS 
data which would appear as a fourth term (left 
out here but added in later testing). Thus, when 
the minimization of (7) is complete, the analyzed 
field (A) is computed as a modified background 
modulated by the “p” function: 
 

( , ) ( , ) ( , ) (8)A x y p x y B x y=  

 
Numerical derivatives were not computed at the 
boundaries, they were excluded from the 
computation of error.  Error was defined as the 
squared difference summed between the truth 
function and (8) over all gridpoint locations.   
 
2.2  Experiment 1 (ignore sine terms): 
 
The first experiment (and all subsequent tests) 
kept the gradient term (C2) at a value of 1.0 
while varying the weight of the background term 
(C1).  Relative improvement was computed from 
the background-only term that was run one time 
where C1 equaled unity and all other coefficients 
were assigned zero, so there were no other 

effects on the solution.  A maximum 87% error 
reduction was observed when C1 equaled 
0.0001 or ten thousandth the value of the 
gradient term.  Giving the gradient a high weight 
with respect to the non-derivative terms 
produced the best results. 
 
2.3  Experiment 2: (include sine structure) 
 
The next test included more structure.  It was 
unexpected that addition of the gradient term to 
the fairly smooth analysis field would have 
substantial impact.  A more realistic test would 
be to include higher frequency structure, and the 
objective here would be to ascertain whether the 
gradient approach would further contribute to 
error reduction with more complex structure, or 
would be unable to achieve much improvement, 
since there was no sinusoidal structure in the 
synthesized background field.  
 
The set of measurement simulations added 
sinusoidal “variability” in the truth field shown 
earlier.  This amplitude was taken to be about 
1% mid-way up the squared function curve, so it 
is really about 100% variability at the low end 
and very small variability at the high end (large 
x, y values).  Here we apply equations (2), (3), 
and (4) in full form. 
 
The quarter wavelength in (3) was selected so a 
complete wave could be represented by four 
points or 40km in this simulation (assuming 
10km grid spacing).  This is less than current 
GPS spacing, and is nearly what one would get 
from the current GOES with a ~10 km sounder 
resolution. 
 
Again the results were very similar to the initial 
case in that there was a minimum error (max 
error reduction) of about 19%, with the same 
order of magnitude for C1 as in the first 
experiment. 
 
Additional testing included synthetic GPS data at 
every 100km (every 10th gridpoint) with a 50% 
influence at 20 km and less beyond.  Using the 
GPS data in combination with the gradient data 
improved the error reduction by about another 
2%; similar to what was seen in the less 
complex field (see Fig. 2). 
 
 
 
 



 

 
Fig. 2. Impact of simulated gradient data (blue); 
open red circles also contain untuned GPS data 
from experiment 1. (i.e., c3 , the GPS coefficient, 
was unity in the related minimization equation  
[not shown]). 
 
2.4  Summary of Analytic Tests 
 
In summary, the numeric/analytical tests 
demonstrate that the gradient approach in a 
minimization configuration is tractable and 
requires little modification to existing code (an 
easy modification of the functional plus some 
preliminary computations of gradient fields are 
all that is required for implementation), solves 
the bias problem, and adds little to 
computational overhead with the benefit of 
substantial reduction in error.  It compliments the 
addition of GPS data in that non-gradient PW 
data is seen to not detract from the solution but 
adds to it.  Any theoretical system is not perfect 
and these new ideas were applied to real cases 
to gain insight and experience.  Several 
problems for gradient application are anticipated 
to be missing data, bad pixels, and clouds (as 
well as other data void areas or product artifacts 
that lead to false edges or unrepresentative 
gradients).  Furthermore, partly cloudy regions 
may or may not have significant impact; this 
remains a subject for additional study. 

 
3.  APPLICATION OF GRADIENT METHOD 
TO THE LOCAL ANALYSIS AND PREDIC-
TION SYSTEM (LAPS) 
 
The prescribed changes using a gradient 
approach to the LAPS variational moisture 
system were incorporated in March 2005.  The 
following observations were encountered during 
this process, some of which were not envisioned 
in the initial implementation plan. 
 
The computation of the background layer 
gradient ran into problems when surrounding 
points were underground.  Then when the layer 
gradient was computed (and averaged), it might 
again be influenced by nearby missing data 
flags.  This was coded around by making sure 
the gradient was under 1000.  Generally 
accepted gradients were on the order of 1.0e-5, 
so values under 1000 were protected from 
missing data flag contamination.  This problem 
would disappear if a terrain-following coordinate 
system was used, but the local analysis 
traditionally uses an isobaric vertical coordinate. 
 
Another aspect of real-time operation that has 
yet to be investigated will be the relationship to 
the sparseness of other data such as GPS in the 
final solution.  It would be logical to assume that 
the gradient technique will lose more and more 
effectiveness as ground-based data density with 
superior error figures becomes more and more 
dense.  
 
The first set of comparison products were made 
between the local analysis parallel and 
operational runs.  The parallel runs contained 
the gradient method, and the operational runs 
did not.  The gradient method ran without 
problem during the entire moist season in 2005 
and produced reliable results. 
 
Figs. 3 and 4 illustrate the new method’s impact 
on a single case time. 
 

 



 

 
Fig. 3. Conventional analysis of total precipitable water (cm).  Satellite data product used – direct use of 
satellite data potentially contaminated with moist bias for 23 May 2005 1300 UTC over Colorado and 
surrounding states.  Note that prior studies have demonstrated that the maximum bias in the GOES 
product data occurs at 1800 UTC.  This 1300 UTC analysis is actually in a timeframe of a secondary bias 
minimum.  However, moist bias is observed to be reduced in a number of circled areas, and increased 
structure is observed in “boxed regions” in the following figure. 
 



 

Fig. 4. Same as in Fig.3 except using the new analysis relying on gradient information from satellite data 
disregarding satellite bias if it exists.  The lower moist bias is evident in circled areas, and better structural 
detail is evident in boxed regions. 
 
Examining the two figures, it is evident that in 
the moist areas on the Kansas plains, there is 
more detail in the water vapor analysis with the 
gradient method.  There also appears to be of 
higher water vapor amounts in eastern Colorado 
in the conventional image (Fig. 3) indicative of a 
high moist bias coming from the satellite data, 
whereas Fig. 4 lacks this higher level and 
appears to render improved moisture field 
structure (more closely resembling spatial cloud 
distribution), especially in the most southern 
boxed area.  
 
Also it should be noted that the dry areas 
between both analyses (high terrain areas) show 
the least difference.  One would expect this 
result since the GOES bias problem decreases 
with lower moisture amounts.   

4.  RESULTS AND CONCLUSIONS 
 
A numerical technique to include gradient 
information from satellite fields was successfully 
devised, first analytically, and then cast into 
digital form for computer application.  The 
analytical solution helped derive the weights to 
apply to the gradient terms in the functional used 
operationally in LAPS.  The system was then run 
on real data comparing analyses that both 
applied and did not apply the new technique, all 
other elements being equal. 
 
Subjectively, it appears that the new 
methodology works both to reduce the moist 
bias inherent in the satellite data while improving 
the structure in the resulting analyzed field.  
Figures 3 and 4 are highly representative of the 



 

routine effects that are observed when the new 
algorithm operates.  The new method is now 
being run quasi-operationally in tests directly 
comparing the two methods.  As of this writing, 
consistent, subjective, positive results have 
resulted from the new technique and it is now 
incorporated into the “operational” LAPS 
analysis.    
 
All of the changes to the functional are not yet 
complete as this remains a work in progress.  
The error that applies to the partial derivative 
terms has no accepted value at this time.  It 
might be possible to better estimate the error 
terms by analytic methods similar to the tests 
conducted in this paper.  One could impose 
random error in a synthetic field and then from 
this, compute the partial derivative error 
estimates. 
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