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1. INTRODUCTION AND BACKGROUND

Flow in urban environments is complicated by the pres-
ence of buildings, which divert the flow into often unex-
pected directions. Contaminants released at ground level
are easily lofted above tall (∼ 100 m) buildings and chan-
neled through urban canyons that are perpendicular to
the wind direction (see e.g., IOP 9 in Chan, 2005). The
path of wind and scalars in urban environments is diffi-
cult to predict even with building-resolving computational
fluid dynamics codes, due to the uncertainty in the synop-
tic wind and boundary conditions and other errors in the
models.

Given the difficulties due to the complexity of urban
flows, solving an inverse problem becomes quite chal-
lening. That is, given measurements of concentration
at sensors scattered throughout a city, is it possible to
detect the source of a contaminant? The ability to lo-
cate a source and determine its characteristics in a com-
plex environment is necessary for emergency response
for accidental or intentional releases of contaminants in
densely-populated urban areas. The goal of this work
is to demonstrate a robust statistical inversion procedure
that performs well even under the complex flow conditions
and uncertainty present in urban environments.

Much work has previously focused on direct inversion
procedures, where an inverse solution is obtained using
an adjoint advection-diffusion equation. The exact di-
rect inversion approaches are strictly limited to processes
governed by linear equations and also assume the sys-
tem is steady-state (Enting, 2002). In addition to adjoint
models, optimization techniques are also employed to ob-
tain solutions to inverse problems. These techniques of-
ten give only a single best answer, or assume a Gaus-
sian distribution to account for uncertainties. General dis-
persion related inverse problems, however, often include
non-linear processes (e.g., dispersion of chemically re-
acting substances) or are characterized by non-Gaussian
probability distributions (Bennett, 2002). Traditional meth-
ods also have particular weaknesses for sparse, poorly-
constrained data problems, as well as in the case of high-
volume, potentially over-constrained and diverse data
streams.

We have developed a more general and powerful in-
verse methodology based on Bayesian inference cou-
pled with stochastic sampling. Bayesian methods re-
formulate the inverse problem into a solution based on
efficient sampling of an ensemble of predictive simula-
tions, guided by statistical comparisons with observed
data (see e.g. Ramirez et al., 2005). Predicted values
from simulations are used to estimate the likelihoods of
available measurements; these likelihoods in turn are
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used to improve the estimates of the unknown input pa-
rameters. Bayesian methods impose no restrictions on
the types of models or data that can be used. Thus, highly
non-linear systems and disparate types of concentration,
meteorological and other data can be simultaneously in-
corporated into an analysis.

In this work we have implemented stochastic models
based on Markov Chain Monte Carlo sampling for use
with a high-resolution building-resolving computational
fluid dynamics code, FEM3MP. The inversion procedure
is first applied to flow around an isolated building (a cube)
and then to flow in Oklahoma City (OKC) using data col-
lected from SF6 tracer gas releases during the Joint UR-
BAN 2003 field experiment (Allwine, 2004). While we
consider steady-state flows in this first demonstration, the
approach used is entirely general and is also capable of
dealing with unsteady, nonlinear governing equations.

2. RECONSTRUCTION PROCEDURE

2.1 Bayesian inference and Markov Chain Monte Carlo

The inversion or reconstruction algorithm uses Bayes’
theorem combined with a Markov Chain Monte Carlo
(MCMC) approach for stochastic sampling of unknown
parameters (see e.g., Gelman et al., 2003). A brief de-
scription is given here; more details can be found in Jo-
hannesson et al. (2004) Bayes theorem is written

p(X|Y ) =
p(Y |X)p(X)

p(Y )
∝ p(Y |X)p(X) (1)

where X represents possible model configurations or pa-
rameters and Y is observed data. For our application,
Bayes theorem therefore describes the conditional prob-
ability (p(X|Y )) of a certain source location and release
rate (the model configuration, X) given observed mea-
surements of concentration at sensor locations (Y ). This
conditional probability p(X|Y ) is also known as the pos-
terior distribution and is related to p(Y |X), the probability
of the data conforming to a given model configuration,
and p(X), the possible model configurations before tak-
ing into account the measurements. p(Y |X), for fixed Y ,
is called the likelihood function, while p(X) is the prior
distribution. In this application, we assume at the outset
that the source could be located anywhere in the whole
domain, so the prior distribution is uniform (though we in
effect limit the prior by choosing our domain boundaries).
The probability p(Y ) distribution is called the prior predic-
tive distribution (Gelman et al., 2003) and represents a
marginal distribution of Y

p(Y ) =

∫

p(X)p(Y |X)dX (2)

For a general problem where analytical solutions are not
possible, the challenge is in computing the likelihood



function. For that purpose we use a stochastic sam-
pling procedure and approximate the posterior distribu-
tion (p(X|Y )) by the empirical distribution function

π(X) =

N
∑

i=1

(1/N)δ(Xi − X) (3)

where, δ(Xi − X) = 1 when Xi = X and 0 otherwise,
and i is the iteration number.

2.2 Sampling procedure

We use a Markov Chain Monte Carlo procedure with
the Metropolis-Hastings algorithm to obtain the posterior
distribution of the source term parameters given the con-
centration measurements at sensor locations (Gelman
et al., 2003; Gilks et al., 1996). The Markov chains are
initialized by taking samples from the prior distribution.
To lower the computational cost, we limit the prior distri-
bution to the ground surface (thus ignoring the possibility
of elevated sources). All buildings (virtual and real) are
also excluded from the prior distribution.

A forward dispersion calculation is performed to pro-
vide the initial data for comparison with observed data
at sensors. Then the Metropolis-Hastings sampling algo-
rithm is used to advance the Markov chains. A sample
is taken from a specified Gaussian proposal distribution
centered at the current chain location and likewise from
a Gaussian proposal distribution for the source strength.
A forward calculation is performed for the proposal with
these new parameters and results are compared to mea-
surements at the concentration sensors. If the compar-
ison is more favorable than the previous chain location,
the proposal is accepted, and the Markov chain advances
to the new location. If the comparison is worse, the pro-
posal is not automatically rejected. Instead, a random
(Bernoulli) “coin flip” is used to decide whether or not to
accept the new state. This random component is impor-
tant because it prevents the chain from becoming trapped
in a local minimum where comparisons are more favor-
able than values in the local sampling area but where the
chain has not converged on the true source location or
release rate.

Each Markov Chain path is determined using this algo-
rithm at each step, as given in detail in Table 1. Multiple
chains are used (typically four) to allow for better statisti-
cal sampling of the parameter space. Statistical conver-
gence to the posterior distribution is monitored by com-
puting between-chain variance and within-chain variance
(Gelman et al., 2003). If there are m Markov chains of
length n then we can compute between-chain variance B
and within-chain vairiances W as:

B =
n

m − 1

m
∑

j=1

(Xj − X)2 (4)

where

Xj =
1

n

n
∑

i=1

Xij (5)

and

X =
1

m

m
∑

j=1

Xi (6)

Table 1: Metropolis-Hastings algorithm used for sam-
pling and advancement of Markov Chains in inversion
procedure.

• Given current state Xi, draw a new candidate state
X̃ from the proposal distribution T (X̃, Xi).

• Compute acceptance ratio as

ρ(X̃, Xi) =
π(X̃)T (Xi|X̃)

π(Xi)T (X̃|Xi)

• Compute acceptance probability α(X̃, Xi) as

α(X̃, Xi) = min
(

ρ(X̃, Xi), 1
)

• Draw u from uniform distribution U [0, 1] and update
the state to Xi+1

Xi+1 = { X̃ if u ≤ α(X̃ ; Xi)
Xi otherwise

W =
1

m

m
∑

j=1

s2
i (7)

and

s2
i =

1

n − 1

n
∑

j=1

(Xij − Xi)
2 (8)

One estimate of variance of X is computed as

var(X) =
n − 1

n
W +

1

n
B (9)

The convergence parameter R, is then computed as a
function of two estimates of variance

R =
var(X)

W
(10)

The necessary condition for statistical convergence to the
posterior distribution is that R approaches unity (Gelman
et al., 2003).

2.3 Source strength scaling

Typically the MCMC sampling requires thousands of
iterations (samples) to converge to the posterior distri-
bution, thus requiring thousands of forward dispersion
model calculations. With simple Gaussian puff mod-
els (Johannesson et al., 2004) it is possible to calculate
the forward models on the fly. With a three-dimensional
CFD model, the computational cost quickly becomes pro-
hibitive even for the simplest cases. For the current ap-
plications, we have simplified the situation by consider-
ing only steady-state flow conditions. (The methodology
remains completely general and can handle unsteady
flows.) By assuming that the advection-diffusion prob-
lem is linear (e.g., no chemical reactions) we can use
the precomputed steady flow field and Green’s funcions
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to carry out one forward simulation at each of the thou-
sands of locations in our prior distribution using a unit
source strength and store the resulting values at the sen-
sor locations in a database. The stored concentrations
can be rescaled depending on the proposed source re-
lease rate for a particular source location. Thus, during
the inversion process, the dispersion results from each
possible source location are obtained from the database
and rescaled according to the current sampled value for
the source strength. In this way, 20 000 iterations for each
of four Markov chains can be performed in less than five
minutes of computational time on two processors.

2.4 Forward model description - FEM3MP

The stochastic inversion procedure relies on a forward
model to calculate instances of predicted sensor mea-
surements, Y , for given source term parameters, X.
Here we use FEM3MP (Gresho and Chan, 1998; Chan
et al., 2001), a three-dimensional, incompressible Navier-
Stokes finite-element code able to represent complex ge-
ometries and simulate flows in urban environments (Chan
and Leach, 2004; Chan, 2005).

For flow around the isolated building, the model is
driven by a steady logarithmic inflow profile at the up-
stream (west) boundary. Natural (i.e. zero tangential and
normal stress) outflow boundary conditions are applied at
the other boundaries. The steady-state flow field is pre-
computed and is used to drive dispersion from a source
with a constant release rate until a steady-state concen-
tration field is obtained. The grid resolution is uniform far
from the building, and is doubly fine near the corners of
the building (see Fig. 3 later).

For the Oklahoma City simulations, we use a setup
similar to Chan (2005) for the third intensive observa-
tion period (IOP3) from Joint URBAN 2003. Again, the
flow field is assumed steady, with a logarithmic inflow pro-
file on the southern boundary with magnitude 6.5 m/s at
z = 50 m and a wind direction of 185◦ (south). The flow
field is pre-computed using FEM3MP. The release rate is
constant and simulations are performed until steady-state
concentration fields are achieved (after about 10 minutes
of simulation time). The atmosphere is assumed to be
neutrally stratified since shear production of turbulence
is significantly larger then buoyant production. Buildings
near the source are explicitly resolved; i.e. the finite ele-
ment grid lines up with the buildings (see Fig. 9 later). Far
from the source, “virtual buildings” are used to reduce the
computational cost. In this region, drag is added to the
grid cells falling within the building boundaries. Previous
work has shown that this approach produces satisfactory
dispersion estimates far from the source (Chan, 2005).

3. ISOLATED BUILDING EXAMPLE

We have developed a prototype example of event re-
construction for a flow around an isolated building (a
cube) with a source located upwind from the building (see
Fig. 1). Four sensors are placed in a diamond-shaped
array in the lee of the building. Data at the sensor loca-
tions is collected using a forward simulation from the true
source location. The data is thus “synthetic” and used
in this case only to test the inversion algorithm. Artificial
measurement error with a standard log-normal distribu-
tion is also added to the synthetic data (in this case with
mean µ = 0 and standard deviation σrel = 0.05).
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Figure 1: Horizontal concentration contours at the
first vertical level generated by forward simulation with
FEM3MP for flow around an isolated building (gray shad-
ing). Four sensors are placed in the lee of the building (di-
amonds). The source is indicated by the magenta square.

The source release rate was set to 0.1 (nondimen-
sional units). As can be seen from Fig. 1 the actual
source is located just above the symmetry line. Because
the symmetry line is also the separatrix of this flow, this
small deviation of the source location from the line of
symmetry results in significant asymmetry in the result-
ing plume (Fig. 1). This example, while simple in ge-
ometry, thus incorporates complexities due to its three-
dimensional nature that were not accounted for in pre-
vious inversion studies. The asymmetry of the plume
is generated purely by the presence of the building.
More simplistic dispersion models do not explicitly resolve
buildings and hence cannot capture such features (Britter
and Hanna, 2003).

The domain is discretized using about 19 000 elements
(42,32,14). Forward runs are computed for all possible lo-
cations (on z = 0) and concentrations values at the sen-
sors are stored in a database for each grid location. Total
computation time for generation of the database was 6
hours using 64 2.4 GHz Xeon processors. The recon-
struction or inversion algorithm proceeds as usual, but
instead of running a new simulation for each proposed
Markov chain step, the results are drawn from the con-
centration database, as described previously. This avoids
repeated computations of releases at the same x, y loca-
tions by simply scaling the release rate as dictated by the
sampling algorithm.

3.1 Source inversion

Figure 2 shows the paths taken by the four Markov
chains. The chains quickly converge on the source loca-
tion, sampling more frequently in the northern half of the
domain as expected due to the asymmetry of the actual
plume. The probability distribution for the source location
is given in Fig. 3, which also reflects the asymmetry of the
actual concentration plume. The peak of the distribution
occurs just upwind of the actual source location. If the
error from the measurements is set to zero (i.e. σrel = 0),
the inversion procedure accurately predicts the source lo-
cation as expected (i.e. the peak of the probability distri-
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Figure 2: Paths of four Markov chain used for source
inversion for flow around an isolated building.
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Figure 3: Probability distribution of source location for
flow around an isolated building.

bution matches the true source; not shown). The proba-
bility distribution is constructed using the second half of
the MCMC iterations (i.e. 10 000 to 20 000), to allow the
Markov chains to “mix” adequately to improve the statis-
tical distribution and to exclude the random initialization
from the final statistics. Thus, the so-called “burn-in” time
is 10 000 iterations.

The corresponding probability distribution for the
source release rate is shown in Fig. 4. The peak of the
histogram coincides with the actual release rate of 0.1.

Convergence rates for the x, y and q inversions are
shown in Fig. 5. All convergence measures reach a value
near 1.1 after about 10 000 iterations, indicating that the
sampling procedure was thorough and adequate to gen-
erate a meaningful posterior probability distribution. Note
that the convergence rate is independent of the spread
in the distribution, and merely indicates that further sam-
pling will not change the results. We are thus able to
successfully invert this idealized three-dimensional dis-
persion problem and determine the source location and
release rate to within a tight confidence region.
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Figure 4: Histogram of source strengths for flow around
an isolated building. Vertical blue line shows actual re-
lease rate.
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Figure 5: Convergence rates for horizontal position (x, y)
and source strength q for flow around an isolated building.

3.2 Composite plume

In addition to probabilistic predictions of the source lo-
cation, emergency responders need predictions of con-
centrations over the entire plume area. A “most likely
plume” could easily be constructed by performing a for-
ward simulation from the peak of the probability distribu-
tion for the source location. This, however, would be one
realization and would not contain the probabilistic infor-
mation inherent in the reconstruction procedure.

We therefore construct a probabilistic, composite
plume, from the plume realizations corresponding to all
the samples from the posterior probability distribution of
source term parameters. The composite plume is ob-
tained by first creating histograms of concentration val-
ues at each spatial location in the domain. This step is
followed by determining the concentration value at each
location for which a certain pre-specified probability is ex-
ceeded. Contours of the 90% confidence interval are
shown in Fig. 6. For values above the threshold (chosen
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Figure 6: Composite plume showing 90% confidence in-
tervals for concentration levels for flow around an isolated
building. The threshold is set at 0.03. For concentra-
tions above the threshold, there is 90% confidence that
the concentration is higher than the contoured value. For
values below the threshold, there is 90% confidence that
the concentration is less than the contoured value. White
regions indicate that a 90% confidence interval cannot be
established.

to be 0.03), the plot shows 90% confidence that the con-
centration at a given location is higher than the contoured
value. For values below the threshold, the contours indi-
cate 90% confidence that the concentration is less than
the contoured value.

The shape of this composite plume is quite different
from that of the actual plume (Fig. 1). The composite
plume represents a probabilistic estimate of concentra-
tions and could aid in emergency response decisions for
evacuation or sheltering in place depending on a chosen
confidence interval and whether an area lies above or be-
low a threshold value for toxicity.

4. OKLAHOMA CITY - JOINT URBAN 2003 IOP 3

The OKC domain includes the central business district,
with a maximum building height of 120 m and an aver-
age building height of 30 m. Figure 7 shows the com-
plexity of the wind flow in the downtown area generated
using FEM3MP with constant inflow boundary conditions
on the southern edge of the domain. Comparisons of
dispersion results are made to 30-min averages of con-
centration measured at fifteen sensors within this domain.
The domain is discretized using about 580 000 elements
(132,146,30). The prior distribution is limited to a slightly
smaller domain (x = [−150, 130], y = [80, 410]) to reduce
computation time. In addition, the cell spacing was effec-
tively doubled by only considering sources in every other
grid cell in a checkerboard pattern. Total computation
time for 2560 forward runs (from each possible source lo-
cation in the concentration database) was over 12 hours
using 1024 2.4 GHz Xeon processors (equivalent to 17
days on 32 processors). Each forward run of FEM3MP
simulataneously calculated 20 different source locations,
requiring 128 different launches of the model. Each in-
stance of the model used 32 processors. After generation
of the database, the inversion process itself requires only
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Figure 7: Surface wind vectors (every third point shown
in each direction) and contours of velocity magnitude pre-
dicted by FEM3MP for flow in the central business dis-
trict of Oklahoma City during IOP 3 of the Joint URBAN
2003 field experiment. Buildings are indicated with vari-
ous shades of gray.

five minutes of computation time on two processors.

4.1 Source inversion

Figure 8 shows the location of buildings and sensors in
the downtown OKC area, together with four Markov chain
paths. The chains quickly converge from four random ini-
tial locations to the general vicinity of the actual source lo-
cation where they spend the remainder of their time sam-
pling the parameter space and refining the probability dis-
tribution. Using the Markov chain paths, we construct the
probability distribution for the source location, as shown
in Fig. 9. The peak of the distribution is located approx-
imately 70 meters south of the actual source location.
Reasons for this will be discussed below. The accom-
panying release rate histogram is given in Fig. 10. The
peak of the distributions falls between 0.003 and 0.004
kg/kg, while the actual source strength was 0.005 kg/kg.

Figure 11 shows convergence rates for x, y and q dur-
ing the 20 000 iterations of the inversion procedure for
OKC IOP3. The values for x and q converge after 10 000
iterations and only change slightly after that. The value
for y is more difficult to pinpoint in the inversion process.
Here y is the stream-wise direction, where a change in
the distance to the source can sometimes be accommo-
dated by a corresponding change in release rate. That is,
a weaker source closer the sensor can sometimes pro-
duce similar results to a stronger source further away.
Therefore, a value of R = 2 for the y location of the source
can be considered acceptable.

A closer look at the individual plumes predicted by dif-
ferent source locations gives insight into the location of
the peak of the x, y probability distribution. Figure 12
shows the plume predicted by FEM3MP for a source at
the actual source location for IOP3 with the actual release
rate. Contours of concentrations predicted by FEM3MP
are shown together with small squares at the sensor lo-
cations colored according to the observed concentrations
during IOP3. Figure 13 shows the plume from the in-
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Figure 8: Paths of four Markov chain used for source
inversion for flow in Oklahoma City during IOP 3. Black
diamonds show sensor locations. The source is indicated
by the magenta square.
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Figure 9: Probability distribution of source location for
flow in OKC during IOP 3.

verted source location, i.e. the peak of the x, y probabil-
ity distribution for the source location. While the general
plumes predicted by the code seem reasonable, there are
clearly discrepancies between the predicted concentra-
tions and observations for both simulated plumes. These
can be seen more clearly in a one-to-one comparison
of observed and modeled values at the 15 sensor con-
centrations, as seen in Fig. 14. The inverted source lo-
cation was determined by the stochastic inversion algo-
rithm which minimizes the absolute error between mod-
eled and observed values. The sum of the absolute er-
rors (Fig. 15) at the sensor locations is smaller using the
inverted source location (∼ 1090 ppb total) than the true
source location (∼ 2860 ppb total).

4.2 Treatment of model errors

The inversion procedure clearly relies heavily on the
accuracy of the sensor measurements as well as the ac-
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Figure 10: Histogram of source strengths for flow in OKC
during IOP 3. Vertical blue line shows actual release rate.
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Figure 11: Convergence rates for horizontal position
(x, y) and source strength q for flow in OKC during IOP
3.

curacy of the forward model used for dispersion simula-
tions. While the FEM3MP code has been validated for
many urban flows, there are several possible sources of
error. To obtain a good probabilistic distribution for the
source location and strength, all sources of error must be
included a priori.

There are several reasons for the mismatch in pre-
dicted and observed concentrations. First of all, there
are uncertainties in the lateral boundary conditions pre-
scribed in the simulation. Steady inflow has been speci-
fied for the inflow boundary, whereas in reality the wind at
the domain boundary has fluctuations in space and time.
A slight change in mean wind direction can also greatly
affect dispersion results. Chan and Leach (2004) demon-
strated that time-varying inflow boundary conditions sig-
nificantly changed the concentration plume in simulations
of dispersion in Salt Lake City. In addition, to save compu-
tation time, the domain size used for these simulations is
smaller than for those performed by Chan (2005) for OKC,
which perhaps increases the influence of the boundaries.
We also use a simplified linear eddy-viscosity turbulence
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Figure 12: Concentration plume predicted by FEM3MP
with observations (small squares colored by concentra-
tion value) for actual source location (small black square)
and release rate for OKC IOP 3.
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Figure 13: Concentration plume predicted by FEM3MP
with source location at peak of reconstructed probabil-
ity distribution (small black square) compared to observa-
tions for OKC IOP 3.

model, whereas Chan (2005) used a non-linear eddy-
viscosity model which gives better agreement with the
data but at a much higher computational cost. Results
from Chan (2005) are reproduced in Fig. 16. The non-
linear eddy-viscosity model better represents dispersion
in regions of building-induced turbulence, hence giving
better agreement with observed concentrations.

Another source of error is in the specification of the
source term in the simulation. While the tracer gas was
released from a point source in the experiment, the model
distributes the source over a grid cell, where the vertical
injection velocity and concentration are specified at the
boundary to match the release rate from the experiment.
This yields an nearly steady concentration flux over the
grid cell but with numerical oscillations (see region near
the source in Fig. 12) in the neighboring cells due to the
strong concentration gradients and inherent limitations of
the numerical scheme.

It is difficult to quantify the individual contributions of
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Figure 14: Scatter plot of FEM3MP predictions vs. ob-
served concentrations at the 15 sensor locations for ac-
tual and inverted source locations.

0 5 10 15
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Station number

A
bs

ol
ut

e 
er

ro
r 

(p
pb

)

Actual source location
Inverted source location

Figure 15: Absolute error of FEM3MP predictions com-
pared to observed concentrations at the 15 sensor loca-
tions for actual and inverted source locations.

the multiple sources of error in FEM3MP. Model errors
are therefore incorporated into the inversion process in a
lump sum fashion by adjusting σrel of the standard log-
normal distribution, the relative error allowed in the com-
parison between different realizations of the simulation
and the observed values. For the OKC simulations, σrel

was set to the relatively high value of 0.5.

4.3 Composite plume

We again construct a probabilistic, composite plume,
representing the probability of concentration at a specific
location being higher or lower than a certain value. Due to
memory limitations in the post-processing step, only the
final third of the iterations are used to construct the com-
posite plume (as opposed to the second half of iterations
used for the flow around the isolated building). Contours
of the 90% confidence interval are shown in Fig. 17 with
the threshold chosen at 10 ppb. Again we note that the
shape of this composite plume is quite different from any
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Figure 16: Concentration plume from Chan (2005)
predicted by FEM3MP with larger grid and more ad-
vanced turbulence model compared to observations
(small squares colored by concentration value) for actual
source location and release rate for OKC IOP 3. De-
tails about the computational setup can be found in Chan
(2005).

individual realization or plume prediction such as those
shown in Figs. 12 and 13. The white region indicates a
lack of information and the inability to specify a 90% confi-
dence interval at those locations (this region is dependent
on the choice of the threshold value). The dark blue re-
gion envelopes the composite plume, indicating regions
where there is 90% confidence that the concentrations
are less than 0.01 ppb.

5. DISCUSSION AND CONCLUSIONS

Our stochastic methodology for source inversion is
based on Bayesian inference combined with a Markov
Chain Monte Carlo sampling procedure. The stochastic
approach used in this work is computationally intensive
but the method is completely general and can be used
for time-varying release rates and flow conditions. The
results of the inversion, specifically the shape and size of
the posterior probability distribution, indicate the proba-
bility of a source being found at a particular location with
a particular release rate, thereby inherently reflecting un-
certainty in observed data or the data’s insufficiency with
respect to quality, spatial, or temporal resolution.

We have demonstrated successful inversion of a pro-
totype problem with flow around an isolated building. Ap-
plication to the complex conditions present during IOP 3
of the Joint URBAN 2003 experiment in Oklahoma City
also proved successful. Despite the many sources of
error present in the CFD model (FEM3MP) used during
the inversion procedure, the peak of the probability dis-
tribution for the source location was within 70 m of the
true source location, and the actual source location was
contained within the probability distribution. A compos-
ite plume showing concentrations at the 90% confidence
level was created using plume predictions from the re-
alizations given by the reconstructed probability distribu-
tion. This composite plume contains probabilistic infor-
mation from the iterative inversion procedure and can be
used by emergency responders as a tool to determine
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Figure 17: Composite plume showing 90% confidence
intervals for concentration levels for flow in OKC during
IOP 3. Observed concentrations are also shown as small
colored squares. The threshold is set at 10 ppb.

the likelihood of concentration at a particular location be-
ing above or below a threshold value.

Future work will include investigation of source inver-
sion using a smaller subset of the 15 sensors available
during the OKC IOP 3 experiment. Unsteady releases,
unsteady flow conditions, and elevated sources will also
be considered. Finally, meteorological uncertainty will be
incorporated to allow for errors induced by lack of suffi-
cient information at the lateral boundaries such as errors
in the specified mean wind direction.
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