Ensemble Broker Service Oriented
Architecture for LEAD

Jay Alameda’, Shawn Hampton', Brian Jewett"? Albert Rossi’,
Bob Wilhelmson™?

'National Center for Supercomputing Applications, University of lllinois
2Deparl‘ment of Atmospheric Sciences, University of Illinois

Abstract

We will be demonstrating a set of
services designed to broker large
number of computational jobs, as
described in requirements for the
Linked Environments for
Atmospheric Discovery (LEAD) ITR
project. This broker system, in
particular, will have the ability to
broker on-demand jobs of various
urgency levels, through an on-
demand service being developed in
collaboration with Cluster
Resources, Inc. The broker is
designed to support the launching of
a multiplicity of ensembles of
workflows. An ensemble, for our
purpose, is a collection of workflows;
each workflow is comprised of nodes
of a variety of flavors. These flavors
could include remote invocations of
our compute-node-local workflow
engine, the Open Grid computing
environments Runtime Engine
(OGRE), a service invocation, or
even a plain script. Within a
workflow description, we can
describe properties and constraints —
for example, we may want to place
groups of nodes on the same
computational resource, or a group
of nodes (or workflows, or an
ensemble) may need to be run in

some on-demand fashion. We will
be demonstrating early capabilities
of the broker system by executing a
subset of the full LEAD capabilities,
as motivated by ensemble
requirements from the atmospheric
science community, on production
NCSA and TeraGrid resources.

Research Objectives

¢ Broker large numbers of
computational jobs onto
production resources

() .
Broker on-demand jobs of
various urgency levels.

Discussion

In the context of LEAD, we are
developing an ensemble broker to
respond to the need to manage a
large number of simulation
ensembles on production resources.
In distinct contrast with the core
orchestration thrust within LEAD,
namely, direct service orchestration
(which in some ways is analogous to
the phone system, ie, one can dial a
number (in this case a service node)
and get an immediate response), we
need to work in the production batch

computing world, which is much
more akin to the postal service, ie,
one makes requests and it is not
known when one will get a response,
not to mention what is the nature of
the response.

In order to work with the postal
service model, our broker needs to
be able to launch an ensemble of
workflows, each workflow having a
variety of node types possible.
These types could include remote
invocations of our compute-node-
local workflow engine, the Open Grid
computing environments Runtime
Engine (OGRE), a service
invocation, or even a plain script.
Within a workflow description, we
can describe properties and
constraints — for example, we may
want to place groups of nodes on the
same computational resource, or a
group of nodes (or workflows, or an
ensemble) may need to be run in
some on-demand fashion.

Ensemble Broker

LEAD Architecture

P, LEAD Portal | [pertoarpamrim

Interactions:
G
-App/Configuration Services| i
“Workflow Services
Il
~Schedulers.

“MyLEAD

Distrbated
Resourees

Figure 1: Ensemble Broker in the context of the LEAD Architecture

In Figure 1, one can see the service
context and service interactions for
the Ensemble Broker. Note that it
interacts with many of the core LEAD
configuration and execution services,
as well as reaching down into lower-
level resource access services,

which include GRAM, Gridftp, and
ssh.

£ %3 i3
o S Ed
i) 1 §
E]B]D]

Figure 2: Ensemble Broker functional diagram

In order to understand how the
broker works, consider Figure 2. In
this figure, we have a 4 member
ensemble of workflows that we
would like to broker to the production
world, represented schematically as
Copper, TeraGrid and Cobalt on the
right of the figure. Note that each
workflow is composed of 3 node
types (ADAS, WRF, Vis),
represented with colors for each
type.

In order to understand how the
broker works, consider Figure 2. In
this figure, we have a 4 member
ensemble of workflows that we
would like to broker to the production
world, represented schematically as
Copper, TeraGrid and Cobalt on the
right of the figure. Note that each
workflow is composed of 3 node
types (ADAS, WRF, Vis),
represented with colors for each
type.

Figure 3: Ensemble Broker service interactions

In Figure 3, we demonstrate how an
ensemble is processed through the
brokering system. Note that
metadata is created and stored
during the first interaction with the
broker. The Execution Service is
responsible for interacting with the
scheduler, host information, and
UAH services, in order to be able to
successfully place a job on a
particular computational resource.

““““““

Figure 4: User interface development:

from web mockup (left) to eclipse-based wizard interface (right).

Figure 4 illustrates our process for
turning user requirements, in this
case expressed as a web page
mockup of parameters that are
scientifically interesting from the
standpoint of describing ensemble
calculations, to an interactive
desktop client which leads the user
to set up their parameter via a
familiar wizard. This work leverages

the Eclipse platform as a rapid
development environment for user
interfaces

Future Work

A key capability of the ensemble
broker is to be able to broker on-
demand nodes. Two services, the
MOAB-data service, and the MOAB-
on-demand service, will be
developed to support this need in
particular. The information service,
MOAB-data, is a web service back-
ended with a relational database
which will support data pushed from
a resource-local instance of the
MOAB scheduler at regular intervals
regarding the load characteristics of
the particular resource in question.

The MOAB-on-demand service is a
web service which allows
authenticated connections by other
services to determine which level of
on-demand service is both allowed,
and feasible, by virtue of a fine
grained authorization scheme to be
implemented within this service.
Some of the on-demand scenarios
that we will investigate with this
service include a N-processor wide
reservation starting by a certain time,
that will allow the computational task
to finish by the desired time (as
indicated by the VvGRADS
scheduler), to preemption of jobs
marked as preemptible to create a
reservation of the proper processor
count, to killing and requeueing
running jobs — with policy decisions
such as a preference for recently
started jobs over jobs near the end
of their runtime as a tunable
parameter for the MOAB scheduler.

Acknowledgements

This work is supported primarily by
the National Science Foundation
under the following cooperative
agreements: ATM03-31574, 31578,
31579, 31480, 31586, 31587, 31591,
and 31594, as well as SCI03-30554,
SCl04-38712, and SCI96-19019.
Any opinions, findings, conclusions,
or recommendations expressed in
this material are those of the authors
and do not necessarily reflect those
of the National Science Foundation.

