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1. Introduction

Many recently-proposed “physical” retrieval approaches
and data assimilation techniques are based on
Bayesian estimation (optimal estimation) theory, and by
necessity assume mean-zero Gaussian error statistics.
As a result, a Gaussian probability density distribution
is imposed on the estimated state, and description of
the error statistics is restricted to mean and
(co)variance alone. If the estimation problem is well-
posed and well-constrained such that a single, well-
defined probability maximum exists, then the optimal
estimation method can be quite effective. However,
there is no way to know whether the PDF of the errors
is truly Gaussian in form, and hence whether the
variational method has produced a robust result. Given
relevant observations and a range of realistic values for
each estimated parameter, Markov chain Monte Carlo
(MCMC) algorithms can be used to sample the true
joint conditional distribution, efficiently seeking regions
of relatively high probability via a quantitative measure
of the fit between observations and estimated
variables. Once a sufficient number of samples have
been obtained, the resulting PDFs can be used to
quantitatively assess the robustness of the variational
solution for each estimated variable.

In this paper, the properties of the MCMC algorithm are
demonstrated using a relatively straightforward two-
parameter MODIS cloud retrieval. Observations consist
of MODIS reflectances in visible and near-infrared
channels, and a physically realistic range of possible
values of cloud particle effective radius and cloud
optical depth is used to define the probability space to
be sampled. Results from a MCMC-based retrieval are
quantitatively compared with results from an optimal
estimation retrieval, and the utility of the MCMC method
is explored. It is found that the PDF of optical depth
obtained from MCMC is decidedly log-normal for optical
depths greater than approximately 20, leading to a loss
of sensitivity to large optical paths in the retrieval when
a Gaussian PDF is assumed. When the variational
retrieval is modified such that the natural log of optical
path is estimated in place of the optical path itself,
direct improvements in the variational retrieval result.
We conclude that the MCMC method can provide
unique and valuable information on the error
characteristics of retrieved variables that can be used
to improve the performance of an operational
variational retrieval.
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Figure 1: MODIS observed reflectance for 0.6
micron (a) and 2.13 micron (b) channels. Scene was
observed over the northeast Pacific ocean at
approximately 2130 UTC 4 July 2001.

2. Radiative Transfer Model and Variational
Retrieval

2a. Description of the Radiant Radiative Transfer
Model

The forward radiative transfer model used in the
retrieval is a simplified version of the Radiant model
(Gabriel et al. 2005), which is a multi-stream plane-



parallel solver applicable to both visible and infrared
portions of the electromagnetic spectrum. Radiant
employs a multiple scattering solution based on a
combination of the well-known interaction principle and
the eigenmatrix method and provides an accurate and
computationally efficient solution for radiances in both
cloudy and clear conditions. For our test case, we
retrieve cloud optical path and effective radius from
measured reflectances in 0.64 and 2.13 micron
wavelengths in a manner analogous to the method
described in Nakajima and King (1990). The scene of
interest was observed at approximately 2130 UTC on 4
July 2001 by the MODIS instrument on EOS Terra, and
consisted of low broken stratus and stratocumulus
clouds over the northeast Pacific Ocean (Fig. 1).

2b. Variational Retrieval Method

Given a model F(x) that relates a set of observed
reflectances y to a set of state parameters x we would
like to estimate the true atmospheric state that
produces these observations. The solution to this
problem can be obtained by maximizing the conditional
probability that the state is equal to the true state given
the available observations and the radiative transfer
model. For our purposes, the state consists of optical
thickness and cloud particle effective radius, and the
observations are MODIS reflectances at 0.64 and 2.13
microns. Because the state and observation error
probability density distributions are often not known, it
is common to assume that they take a Gaussian form.
This is both useful and appropriate when only the mean
and variance are known as the characteristics of the
Gaussian PDF are fully determined by only two
parameters (Devore 1995). Gaussian distributions are
also algebraically easy to manipulate and have the
added benefit that the most probable solution is
identically that which minimizes the error-weighted
difference between state and observations. The
solution is then obtained by minimizing a cost function
that consists of the negative log of the Gaussian joint
probability distribution
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where X, is the a priori value of the state, Sy and S, are
the observation and a priori error covariance matrices,
respectively, and C is the normalization constant for the
Gaussian probability distribution. The maximum
probability (minimum variance) solution is found by
minimizing the gradient of the cost function with respect
to the set of unknown x. In this case, we set the cost
function gradient equal to zero and solve for x through
a Newtonian iterative solution to the resulting equation
(Rodgers 2000)
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Here, x; is the current estimate, xi.1 is the prior
estimate, K is the matrix of partial derivatives of the
forward model with respect to x (the Jacobian matrix),
and K' is its transpose. Equation (2) makes it clear that

the solution depends largely on both the specification of
the form and magnitude of error covariances Sy and Sa.
Two key assumptions must be made (1) magnitude of
the covariances and (2) imposition of a Gaussian
shape. In the next section, we describe how MCMC
can be used to obtain the full unapproximated
conditional PDF, and how this PDF can be used to
estimate errors that result from the Gaussian
constraint.
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Figure 2: Schematic depiction of the MCMC iterative process. (a) A single
MCMC iteration and (b) a portion of the MCMC random walk depicting the
accept/reject sequence.

3. MCMC Sampling Procedure

In the retrieval process, what we desire is a search of
the probability space for the most likely values of the
retrieved state given a set of observations. To be able
to evaluate the robustness of the retrieval, as well as
the effective information content of the observations,
the full joint conditional PDF for the set of retrieved
state parameters is required. If we wish to retrieve only
one or two parameters such that the state space is one
or two dimensional, then it would be feasible to step
through the range of possible values for each
parameter in small increments, computing an error-
weighted distance between state and observations and
computing the PDF in the process. However, for state



dimensions greater than one or two, this sort of brute
force sampling quickly becomes intractable. MCMC is
based on the fact that most values of the state are
associated with very low probability; the state space is
largely empty (Tarantola 2005). In fact, as the
dimensions of the estimation problem grow, the state
space tends to become increasingly empty. MCMC
exploits this fact, searching out areas of concentrated
probability within the state space and sampling them
via a guided random walk. In this paper, we use a form
of MCMC similar to the well-known Metropolis-Hastings
algorithm (Metropolis et al. 1953, Hastings 1970). For
thorough and accessible discussions of the theoretical
underpinnings of the MCMC algorithm, the reader is
referred to Mosegaard and Tarantola (1995), Gelman
et al. (2004) and Tarantola (2005).

The Markov chain is started from a set of state
parameters drawn from a bounded Uniform PDF, with
bounds set to physically realistic values for each
parameter. In each MCMC search iteration a randomly-
chosen state parameter is perturbed by an amount
equal to a uniform random variable multiplied by the
allowable parameter range and modified by a tuning
factor determined during the adaptive burn-in (see
discussion below). If the newly-perturbed parameter
value exceeds its allowable range, the new value is
discarded and another random perturbation is applied.
This process is repeated until an acceptable parameter
value has been obtained, at which point new forward
observations are computed and the distance between
state and observations is calculated and compared to
the previous value. For the current application, we
employ a Gaussian (L) likelihood function defined
identically to the Gaussian cost function in equation (2),
except that MCMC needs no a priori term. For
consistency, the observation error covariance is
specified as in the optimal estimation technique
according to instrument error characteristics and
forward radiative transfer model errors. The new state
is accepted and stored if the new likelihood exceeds
the old, or if the new value is sufficiently close to the
previous value as determined in a partially probabilistic
manner (Fig. 2). This probabilistic acceptance is
important in that it (1) encourages the algorithm to
sample regions close to areas of relatively large
probability, and (2) allows the algorithm to leave a local
probability maximum. In the current application, a given
state is probabilistically accepted if the ratio of the new
likelihood to the old is greater than a random variable X
between 0 and 1. Because we have computed the log-
likelihood, the new state is accepted if

X < exp((bmzw - (I’o!d) (3)

" The bounded uniform PDF is appropriate in the
retrieval context as it represents the minimum possible
prior information on the state, and assumes no other
information aside from a reasonable range of values
for each retrieved parameter.

where X is drawn from the a priori probability
distribution. As is common practice, we use a burn-in
period in which sampling is done, but no states are
stored, for the purpose of “forgetting” the initial value in
the chain. Similar to the method employed in
Tamminem and Kyrola (2001) and later modified in
Tamminem (2004), we allow the algorithm to adaptively
change the step length during the burn-in period.
Tuning the step length during burn-in leads to more
efficient sampling of the state space once burn-in has
finished. After burn-in, adaptive sampling is turned off
to ensure sampling from the correct posterior
distribution. It was found that a burn-in length of 2,000
samples was generally sufficient to converge to
sampling a stationary PDF.
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Figure 3: Example of convergence of MCMC to sampling a stationary distribution-
-in this case samples of the joint conditional probability of optical path and
effective radius for pixel number 19,19. Progressively greater numbers of samples
are shown in (a) through (e), while the result of brute force integration in
increments of 0.1 in optical path and effective radius is shown in (f) for
comparison.

The MCMC algorithm is run for many successive
iterations to allow a thorough sampling of the state
space, and a posterior probability density distribution is
built for each state parameter from the set of accepted
states. Based on initial tests, it was found that a sample
size of 1,000 was sufficient to characterize the
moments of the posterior PDF. To ensure full sampling
of the PDF in each pixel, we chose to run the algorithm
until 20,000 samples were accumulated for each pixel.
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Figure 4: Optical path and effective radius for the control ¢ase from (a and b) variational retrieval, (¢ and d) mode of the MCMC PDF, and (e
and f) mean of the MCMC PDF. Effective radius has been screened out (gray areas) where 0.64 micron reflectance is less than 0.25.

Depending on the error characteristics and the shape
of the actual joint conditional PDF, it took between
35,000 and 500,000 iterations after the adaptive burn-in
to obtain a 20,000 sample set.

An illustration of the convergence of the MCMC
algorithm to sampling a stationary distribution is
presented in figure 3, which depicts samples obtained
from the joint PDF of optical path and effective radius
for pixel (19,19) in the MODIS dataset. It is clear that by
as early as 200 samples (Fig. 3a), the PDF is starting
to take shape, and that by 10,000 samples (Fig. 3d) the
PDF is well-characterized. For comparison, the PDF
obtained from 1,000,000 samples (Fig. 3e) is
contrasted with the result of brute force sampling
across the range of values for optical path and effective
radius (Fig. 3f). Brute force sampling was performed by
stepping through the range of optical path and effective
radius in increments of 0.1, running the forward model,
and computing the likelihood function in each iteration.
Though the optical path PDF has a slightly longer tail in
the MCMC result, the PDFs are remarkably similar,
demonstrating the effectiveness of MCMC in
characterizing the true PDF.

4. Results

In this section, we present results from two different
comparisons between a MCMC and a variational
retrieval. Errors in each channel were specified as 5%
of the observed reflectance. A priori optical path and
effective radius for both cases were set equal to
physically reasonable values for liquid stratus clouds;
20 and 10 microns, respectively (Miles et al. 2000).
Error variances of 225 and 100 umz were assigned to

these a priori values for the purpose of spanning
ranges of optical path and effective radius observed in
nature; 0 to 100 and 0 to 60, respectively. It was
assumed for simplicity that observation errors were
uncorrelated between channels, as were a priori errors,
and convergence to a solution for the scene of interest
was uniformly obtained within 10 iterations. In both
CTRL and 2XERR cases, we compare both retrieved
values and PDFs, as well as the information content,
and compare the variational retrieval with the mean and
mode of the distribution obtained from MCMC. If the
PDF is truly Gaussian, or at least centered and
unimodal, the mean and mode retrieved values should
be identical.

Retrieved optical path and effective radius are plotted
for the variational retrieval in figures 4a and 4b, for the
mode of the MCMC PDF in figures 4c and 4d, and for
the mean of the MCMC PDF in 4e and 4f. Examination
of the retrieved optical path shows immediately that,
though all estimates recover the relatively thin cloud
and clear areas well (t < 20), retrieval of larger values
of optical depth varies significantly across the different
retrievals. This is an early indication of the known loss
of sensitivity in the visible channel to optical depths
greater than approximately 50. Retrieved effective
radius exhibits almost exact similarity across all
retrievals, with the only significant differences occurring
in regions of clear air, or where clouds are extremely
thin.
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Figure 5: PDFs from MCMC retrieval of (a) optical path and (d) effective radius for
the control case. Shown at right are PDFs for two selected pixels (b) and (e) relatively
large optical path and small effective radius and (¢) and (f) relatively small optical
path and large effective radius. Uniform a priori is shown in light gray, posterior
MCMC PDF is shown in black, and Gaussian variational PDF is in dashed gray. The
two pixels shown in greater detail are outlined in thick dashed gray in the 5x5 matrix.
The total integrated absolute difference between MCMC and Gaussian PDFs (see text
for explanation) is printed in the upper right hand cormner of each pixel in (a).

Retrieved optical path and effective radius PDFs from
both MCMC and variational techniques are compared
in figure 5 for a 5x5 pixel subregion outlined by the
white box in figures 4c and 4f. In general, it can be
seen that all MCMC PDFs are mono-modal, indicating
that a quadratic minimization technique can be
expected to perform well. In addition, the effective
radius PDFs (Fig. 5d), as well as PDFs in pixels in
which optical depth is less than ~ 20, appear to be well-
characterized by a Gaussian distribution. However, as
optical paths increase beyond 20, the optical path
PDFs increasingly depart from Gaussian. In fact, for
optical paths greater than 50 (pixels (15,19), (16,19)
and (16,20)), the MCMC PDF exhibits little departure
from the a priori bounded uniform PDF, indicating that
the observations have contributed very little information
to the solution. For pixels with optical depths between
20 and 50, the MCMC PDFs appear to be log-normal in
shape, with a mode that is increasingly displaced from
the variational mode with increasing optical path. The
fact that the PDFs for effective radius are not as
skewed as those for optical path is consistent with the
physical limitations imposed on the drop size
distribution by the collision-coalescence process. As
drop radii increase beyond 20 um, the drizzle process

becomes increasingly active, limiting the presence of
large cloud droplets—particularly in liquid clouds over
the ocean (Cooper et al. 2003).

To more clearly demonstrate the similarities and
differences between variational and MCMC retrieved
PDFs, t and re from two selected pixels are shown
enlarged at the right side of figure 5. Figures 5b and 5c
depict optical path PDFs for pixels with relatively low
(10-15) and relatively high (~ 40) optical path
respectively, while figures 5e and 5f depict PDFs of
effective radius in these same pixels. In these figures it
can be seen that the observations contribute enough
information to effectively constrain the retrieval for low
optical paths (Fig. 5c); the MCMC and variational
solutions are nearly identical in this case. However,
with increasing optical path (Fig. 5b), the solutions
diverge, and the variational PDF provides a poor
approximation to the solution. Though pixels with both
relatively small (Fig. 5e) and large (Fig. 5f) effective
radii appear to be well-characterized by a Gaussian
PDF, careful examination of all four figures reveals that
each of the MCMC PDFs has a tail--none are perfectly
Gaussian. This tail is uniformly much smaller for the
effective radius than for optical path, though it can be
more clearly seen in the pixel with relatively large
effective radius (Fig. 5f).

5. Quantitative Assessment and Improvement of
Variational Retrieval

5a. Information Content and Assessment of
Variational Retrieval

To be able to effectively retrieve certain state variables
from observations, the observations must contain
sufficient information on the desired state to be able to
constrain the solution. It is, therefore, common to use
so-called information content measures to quantify the
amount of information contributed to the estimate of the
state by an individual observation or sets of
observations (Rodgers 2000, L'Ecuyer et al. 2005).
One common measure of information is the Shannon
Information Content, in which the information content of
an observation or set of observations is computed as
the reduction in entropy due to the addition of
information from observations. Shannon information
content is then defined as the difference between the
entropy of the a priori state and the entropy of the
retrieved state, which can be interpreted as the extent
to which the number of allowable states is reduced by
the addition of information from the measurements. For
the variational case, both estimated and a priori PDFs
are Gaussian, and the information content reduces to
(Rodgers 2000, L'Ecuyer et al. 2005)

H= %l()gg \sas;l\ (4)

Since this expression is predicated on the assumption
of Gaussian statistics, a quantitative assessment of the
robustness of the Gaussian assumption can be
obtained by comparing information content from the



variational retrieval with that computed explicitly from
the MCMC PDFs.
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Figure 6: Comparisons of information content computed from MCMC PDFs (a and ¢) and variational
retrievals (b and d) for optical path (a and b) and effective radius (¢ and d). All results are taken from the
control case.

Comparison of information content between variational
and MCMC retrievals (Fig. 6) indicates that the
variational solution over-estimates the information
content of the observations. Mean information content
for optical path was 0.7 bits higher for the variational
estimate, while mean information content for effective
radius was 0.26 bits higher. Recall that the MCMC-
retrieved PDFs of t and re for the control case (Fig. 5)
were decidedly log-normal for both t and to a lesser
extent re. This suggests that larger values of t will have
a higher probability of occurring in the MCMC retrieval.
The absence of such a “tail” in the variational solution
falsely leads one to believe that the observations do a
better job of constraining the solution than they actually
do. The fact that there is a greater discrepancy for
optical path as compared to effective radius is due to
the fact that MCMC-retrieved optical path PDFs
exhibited a consistently greater departure from
Gaussian.

A more quantitative measure of the differences
between variational and MCMC solutions can be
obtained by computing the integrated absolute
difference (IAD) between the two retrieved PDFs. This
measure is computed by calculating the absolute value
of the difference between the variational and the
MCMC PDF in each discrete bin, then summing the
result. Since each PDF uses the same bin intervals,
and since the PDFs are normalized so that they each
integrate to one, this measure is independent of bin
size. Since each PDF integrates to 1.0, a value of IAD
of 1.0 indicates a 100% difference between the PDFs.
For illustration, values of IAD for optical depth PDFs
are printed in the upper right hand corner of each pixel
in Figures 5a-5c. From this figure it can be seen that

IAD values of 0.0 to 0.2 represent a negligible
difference between variational and MCMC PDFs, while
values above 0.7 represent relatively large departures.

5b. Use of MCMC Results to Modify and Improve
the Variational Retrieval

The preceding section provides examples of
diagnostics that can be used to quantify the quality of a
Gaussian-based variational retrieval once the full PDF
is known. The greater the integrated differences
between PDFS (and consequent differences in
information content), the more non-Gaussian the
statistics are, and the poorer the retrieval will be. It is
logical to ask whether this information can, in turn, be
used to improve the variational retrieval, since it is still
a desirable method by virtue of its computational speed
and its basis in the physics of the radiative transfer
problem.

In theory, visible reflectance should be sensitive to
optical paths up to 50, however, the variational retrieval
demonstrated loss of sensitivity at optical paths above
30 (Fig. 4). The fact that the MCMC algorithm returned
log-normal PDFs for 1 and re in both CTRL and 2XERR
cases suggests that this problem could be partially
mitigated by retrieving the natural log of optical path
and effective radius. A log-normal PDF is thus imposed
on 1 and re, and because the natural log of a log-
normally distributed random variable is distributed
Gaussian, we can retain the Gaussian variational
framework. The only fundamental change is that the
Jacobian is computed with respect to variations in the
natural log of t and re, and the a priori error variance is
specified such that the variance of the log-normal a
priori distributions for t and re is identical to the
variance of the Gaussian a priori PDFs.

Because retrieval of the log of effective radius was
essentially identical to the original retrieval effective
radius (not surprising given the relatively small tails on
the PDFs of re), we focus on the results of the retrieval
of log of t. Comparison of retrieved optical path from
the original variational retrieval, and the variational
retrieval of log-t for the control case (Figs. 7a and 7d)
demonstrates restored sensitivity to larger values of
optical path for the log-t retrieval. Retrieved optical
path now much more closely resembles the mode of
the MCMC retrieval (Fig. 4a), and the information
content of the variational retrieval (Fig. 7e) now more
closely approximates that of the MCMC estimate (Fig.
7b). In addition, integrated differences between
variational and MCMC PDFs are reduced by
approximately 40% in regions where optical path is
greater than 30 (Figs. 7c and 7f). Though fairly large
differences still exist in regions of relatively thick cloud,
there are no differences larger than 0.8 left in the
domain.
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Figure 7: Plots of retrieved optical path from the control case (a) and the control case with log of optical path estimated (d).
Differences between PDFs from variational retrieval and MCMC are plotted for (b) control case and (e) control case with log of
optical path estimated. Optical path information content from MCMC and variational retrieval of log-tau are plotted in (e) and

(f) respectively.

Improved correspondence between MCMC-retrieved 1
and the log-t retrieval is further illustrated in a scatter
plot of variational optical path vs. that from the mode of
the MCMC PDF (Fig. 8), in which it is clear that the
variational estimate loses sensitivity at optical depths
greater than 30 for the Gaussian case, while the log-t
retrieval retains a closer match to the MCMC result for
larger optical paths. Note, however, that because the a
priori optical path is still set at 20, larger values of
optical path still tend to exhibit a low bias in the
variational retrievals. This highlights the added benefit
of the MCMC techniques; they do not rely on any
assumed a priori information. Because the information
from the visible channel saturates at values of t > 50,
results are compared only for t in the range of zero to
fifty.

6. Conclusions

Given a set of observations and a model that relates
observations to a set of desired state variables, Markov
chain Monte Carlo methods can be used to generate
the full joint conditional posterior PDF for the unknown
state. In this paper we have used MCMC to obtain
PDFs for optical path and effective radius retrieved
from visible and near-infrared MODIS reflectances. The
results have been used to evaluate a more traditional
variational retrieval of t and r, that assumes Gaussian
error characteristics. It was found that assumption of
Gaussian errors leads to a loss of sensitivity in the
retrieval to optical depths greater than 30. In addition,
assumption of Gaussian errors leads to a consistent
overestimate of the information content of the
observations. Comparison of MCMC PDFs with those

assumed in the variational retrieval revealed that the
PDFs for both retrieved variables were log-normal in
form, though the effective radius PDFs exhibited a
much smaller tail compared with those from the optical
path. When the variational retrieval is modified such
that the natural logs of t and re are retrieved, the
retrieved values of effective radius change little, but
sensitivity to large optical paths is restored and values
of optical path up to 50 can be obtained. In addition,
assumption of log-normal errors leads to better fit
between the assumed PDFs in the variational retrieval
and those obtained from MCMC, and information
content is more consistent between the MCMC result
and the variational.

The relatively straightforward application of the MCMC
algorithm in this paper demonstrates the utility of
MCMC for evaluating variational estimation methods. In
principle, the technique can be extended to more
complex estimation problems, especially ones in which
we expect that the PDFs may be highly non-Gaussian.
If computational difficulties can be overcome, MCMC
also has obvious applications for evaluating the
Gaussian assumptions used in atmospheric data
assimilation systems. Because MCMC is already
tractable for small-dimensional parameter spaces (e.g.,
< 20), initial experiments involving estimation of the
PDFs of semi-empirical numerical model physics
parameters should currently be possible. These PDFs
would contain information on the sensitivity of the
model evolution to specified constant parameters, and
could provide guidance on ways to reduce model error.
It should also be noted that MCMC could actually be
used to increase the efficiency of some retrieval
methods, particularly those that explicitly integrate



probabilities over a large database of solutions (e.g.,
Kummerow et al. 2001). In these retrievals, the
difference between observations and state is computed
for every solution in the database, leading to a constant
and large number of numerical operations for each
retrieved profile. It is possible that MCMC could be
used to sample the set of solutions, returning a nearly
identical solution for a much smaller number of
iterations.
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Figure 8: Scatterplot of optical path retrieved from Gaussian variational (light
gray) and Log-Normal variational (dark gray) vs. optical path retrieved from
the mode of the MCMC PDF. The one-to-one line is depicted in black for
reference

Acknowledgments

This work was funded by NASA NMP contract NAS1-
00072. Mick Christi, Philip Gabriel, and Kyle Leesman
helpfully fielded questions about the Radiant radiative
transfer model, while Steve Cooper assisted in
estimating the errors associated with neglecting
absorption in the near-infrared. Tomi Vukicevic and
Richard Davis provided guidance on the proper
application of the MCMC algorithm.

References

Cooper, S. J., T. S. L'Ecuyer, and G. L. Stephens,
2003: The impact of explicit cloud boundary
information on ice cloud microphysical
property retrievals from infrared radiances. J.
Geophys. Res., 108, DOI:
10.1029/2002JD002611

Devore, J., 1995: Probability and Statistics for
Engineering and the Sciences, 4th Ed.,
Wadsworth, Belmont, CA.

Gabriel, P. M., M. Christi, and G. L. Stephens, 2005:
Calculation of Jacobians for Inverse Radiative
Transfer: An Efficient Hybrid Method. J.
Quant. Spect. and Rad. Trans. In Press

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin
2004: Bayesian Data Analysis, 2nd Ed.,
Chapman and Hall/CRC, New York, NY.

Hastings, W., 1970: Monte Carlo sampling methods
using Markov chains and their applications.
Biometrica, 57, 97-109.

Kummerow, C., Y. Hong, W. S. Olson, S. Yang, R. F.
Adler, J. McCollum, R. Ferraro, G Petty, D. B.
Shin, and T. T. Wilheit, 2001: The evolution of
the Goddard Profiling Algorithm (GPROF) for
rainfall estimation from passive microwave
sensors. J. Appl. Meteor., 40, 1801-1820.

L'Ecuyer, T. S., P. M. Gabriel, K. Leesman, S. J.
Cooper, and G. L. Stephens, 2005: Objective
Assessment of the Information Content of
Visible and Infrared Radiance Measurements
for Cloud Microphysical Property Retrievals
over the Global Oceans. Part I: Liquid Clouds.
J. Appl. Meteor. In Press.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A.
H. Teller, and E. Teller, 1953: Equations of
state on fast computing machines. J.
Chemical Physics, 21, 1087-1092.

Mosegaard, K., and A. Tarantola, 1995: Monte Carlo
sampling of solutions to inverse problems. J.
Geophys. Res., 100, 12,431-12,447 .

Miller, S. D., G. L. Stephens, C. K. Drummond, A. K.
Heidinger and P. T. Partain, 2000: A
multisensor diagnostic satellite cloud property
retrieval scheme. J. Geophys. Res., 105,
19955-19971.

Nakajima, T., and M. D. King, 1990: Determination of
the optical thickness and effective particle
radius of clouds from reflected solar radiation
measurements. Part I: Theory. J. Atmos. Sci.,
47, 1878-1893.

Rodgers, C. D., 2000: Inverse Methods for Atmospheric
Sounding, Theory and Practice, World
Scientific, Singapore

Tamminem, J., and E. Kyrola, 2001: Bayesian solution
for nonlinear and non-Gaussian inverse
problems by Markov chain Monte Carlo
method. J. Geophys. Res., 106, 14,377-
14,390.

Tamminem, J., 2004: Validation of nonlinear inverse
algorithms with Markov chain Monte Carlo
method. J. Geophys. Res., 109, D19303,
doi:10.1029/2004JD004927.

Tarantola, A. 2005: Inverse Problem Theory and
Methods for Model Parameter Estimation,
SIAM, Philadelphia, PA.



