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1. Introduction

It is well known that the foundations for three and four di-
mensional variational data assimilation, 3D and 4D VAR,
arise from Bayesian probability theory. This problem is
derived in (Lorenc, 1986), L86 hereafter, for general mul-
tivariate probability density functions, pdfs, for both the
marginal and conditional distributions until we arrive at
the definition of the errors. At this point the errors are then
assumed to be additive and hence Normally distributed.

In (Cohn, 1997) it is suggested that it may be that
we have data which is lognormally distributed and hence
the errors are multiplicative. Increasingly there has been
more data sets to back the claim about the lognormal dis-
tributed variables, (Sengupta et al., 2004) but as early as
1977 variables in the atmosphere have been identified as
lognormally distributed, (Mielke et al., 1977).

Given these non Normal variables then we have to
address how to correctly assimilate them. In (Fletcher
and Zupanski, 2006a), FZ06a hereafter, we start to ad-
dress this problem for multivariate lognormally distributed
variables. We are able to derive a cost function similar
to the one associated with the multivariate Normal mode.
There is much discussion as to which statistic is the best
to use to represent the distribution. With the multivariate
lognormal there is only one statistic that can represent
the distribution and that is its mode.

The reason for such a bold statement is due to a
property that statisticians have known about the lognor-
mal distribution since the 1960s. This distribution is not
uniquely determined by its moments, (Heyde, 1963). This
then causes problems if we are seeking the first moment.
We would not know if we were approximating the lognor-
mal distribution or the other distribution that satisfies the
moment equations.

In FZ06a we derive the cost function associated with
the mode of the multivariate lognormal distribution. We
know that this state is the most likely and hence this is
where the pdf is at a maximum. We show that the cost
function associated with the lognormal distribution is sim-
ilar to the Normal cost function and that the Jacobian and
the Hessian also have a similar structure. The reason
for seeking these matrices is for their use in minimisa-
tion routine such as quasi-Newton and conjugate gradi-
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ents methods but also they are used in Hessian precon-
ditioning, (Zupanski, 2005).

Deriving the cost function for the multivariate log-
normal distribution is the first step. In atmospheric and
oceanic modelling we have a large number of observa-
tions and model states which are not all from the same
type of distribution and hence we can either assimilate
the different types separately and ignore the correlations
between the variables, try and find a transform so that all
of the variables are distributed of the same type or as we
have accomplished in (Fletcher and Zupanski, 2006b),
FZ06b hereafter, we can define new multivariate distri-
butions which are combination of other distributions.

In FZ06b we define and prove a multivariate distribu-
tion which has p Normal and q lognormal variates. The
distribution retains many of the properties of the two sub-
distributions but also contains new properties that are not
obvious at first glance but when the mathematics is ap-
plied the origin of the new properties become clear.

In this paper we show how to incorporate the new
distribution into the Maximum Likelihood Ensemble Filter,
MLEF, (Zupanski, 2005; Zupanski et al., 2005) which is
under development at the Cooperative Institute for Re-
search in the Atmosphere, CIRA, Colorado State Uni-
versity, CSU, and Florida State University, FSU. This is
an ensemble filter which instead of using the ensemble
mean as in the Ensemble Transform Kalman Filter, ETKF,
(Bishop et al., 2001), to generate our statistics we use
the state with the maximum likelihood. This state is cur-
rently found through solving the non-linear quadratic cost
function associated with Normal errors.

In the next section we briefly summarise the
Bayesian framework as set out L86 and show the deriva-
tion to the cost function associated with Normal errors.
In Section 3 we present a summary of the derivation and
key results from FZ06a to do with the lognormal errors.
In Section 4 we present the hybrid distribution and derive
the associated cost function as well as the Jacobian and
Hessian to show that the structure of these matrices is
similar to that of the Normal case. We finish with con-
clusions and plans on how to test this distribution in the
MLEF.

2. Normal Framework

In this section we provide a summary of the derivation
in L86 of the Bayesian framework that leads to the non-
linear quadratic cost function that is used when we have
Normally distributed variables. Although it is thought that



it is the errors that are distributed Normally it is not. The
important fact is that the state variables themselves are
Normally distributed. We are using the property of the
Normal distribution that the sum of two Normal variable is
itself a Normal variable.

2.1 Bayesian probability

The starting point in L86 is to consider the problem of
finding the set of initial states such that the subsequent
forecast is the ‘best’ possible. Due to the problem of the
forecast being imperfect we have to compensate by intro-
ducing observations of the physical system. Therefore let
the state vector be x where xT = (x1, x2, . . . , xN ) given
N is the total number of state variables, y is the vector of
observations vector, yT = (y1, y2, . . . , yNo) and No is the
total number of observations such that No << N .

We now require a relationship between the model
states, x and the observations, y. This relationship is

y = h (x) , (1)

where h (x) is a vector of non-linear interpolations or
transformations from the model states to the observations
i.e.

h (x) =




h1 (x1, x2, . . . , xN )
h2 (x1, x2, . . . , xN )

...
hNo (x1, x2, . . . xN )


 . (2)

If the relationship between the observations and the
model state variables is linear then h (x) is a matrix vec-
tor multiplication, Hx where H is a rectangular matrix of
dimensions No ×N . This then gives us the problem, ac-
cording to L86, of finding the ‘best’ x which inverts (1) for
a given yo where yo is the physical observation which
contain errors.

The problem is then defined from Bayes theorem

P (A |B) ∝ P (B|A) P (A) . (3)

In the case that we are interested in we have the event
A as x = xt and the event B as y = yo. We can then
define (3) as

P
(
x = xt

∣∣y = yo
)
∝ P

(
y = yo|x = xt

)
P

(
x = xt

)
,

(4)
where the superscript t represents the ‘true’ solution and
o represents observed value. With this (4) defines a N
dimensional multivariate pdf, denoted as Pa (x), where a
represents the analysis.

We now seek the mode of the analysis distribution.
That is we seek xa = x such that

dPa

dxa
= 0,

d2Pa

dx2
a

< 0. (5)

2.2 Normally Distributed Errors

We start with the probability P
(
x = xt

)
which represents

our knowledge about x before the observations are taken.
This can be considered as the background error, εb,

εb ≡ x− xb, (6)

where xb represents the background state. As such
we are considering deviations away from this back-
ground state where we have an associated probability of
Pb (x− xb).

For the observational error we consider the total er-
ror which is the combination of the instrumental and rep-
resentativeness errors

P
(
y = yo|x = xt

)
= Po (yo − h (x)) , (7)

which is εo. We have assumed that the observational
and the background errors are independent which is an
acceptable assumption L86. Combining (6) and (7) en-
ables us to express (4) as

Pa (x) = Po (yo − h (x)) Pb (x− xb) ≡ Po (εo) Pb (εb) .
(8)

We now assume multivariate Normal, MN , distribu-
tions for the probabilities so that εo ∼ MN (0, R) where
we have zero mean and covariance matrix R. The back-
ground errors are distributed εb ∼ MN (0, B) with mean
zero and covariance matrix B. Therefore

Pb (εb) ∝ exp
{
−1

2
εb

T B−1εb

}
(9)

≡ exp
{
−1

2
(x− xb)T B−1 (x− xb)

}
,

Po (εo) ∝ exp
{
−1

2
εoT R−1εo

}
(10)

≡ exp
{
−1

2
(yo − h (x))T R−1 (yo − h (x))

}
.

Therefore substituting (10) and (11) into (4) yields

Pa (x) ∝ exp
{
−1

2
(x− xb)T B−1 (x− xb)

− 1

2
(yo − h (x))T R−1 (yo − h (x))

}
.(11)

Maximising Pa is the equivalent of minimising − ln of (11)
and so this then gives the non-linear cost function as

J (x) =
1

2
(x− xb)T B−1 (x− xb)

+
1

2
(yo − h (x))T R−1 (yo − h (x)) . (12)

If we consider an unconstrained minimisation
method, such as the non-linear conjugate gradient or
quasi-Newton methods, to find the minimum of (12) we
require the Jacobian and the Hessian of (12). The Jaco-
bian vector of (12) can easily be verified as

∂J

∂x
≡ B−1 (x− xb)−HT R−1 (y − h (x)) , (13)

where

H =
∂h

∂x
, (14)

is the Jacobian Matrix of h with dimensions No × N and
∂J

∂x
has dimensions N × 1 where we drop the superscript

o as we are now only dealing with the physical observa-
tions.



The Hessian of (12), componentwise, is defined as

∂2J

∂xi∂xj
≡

[
B−1 + HT R−1H

]
ij
−

[
GiR

−1 (y − h (x))
]

j
,

(15)
where G is the Hessian of h such that

Gi ≡ ∂

∂xi

(
∂h

∂x

)
. (16)

Therefore the dimensions of the full Hessian matrix of J
is No × N , where there are N of the Gi matrices with
i = 1, 2, . . . , N and j = 1, 2, . . . , N .

3. Lognormally Distributed Errors

An important difference between Normal and lognormal
errors is that we only have the additive property with the
Normal errors. If we consider the univariate lognormal
distribution

f (x) =
1√

2πσx
exp

{
−1

2

(
ln x− µ

σ

)2
}

, (17)

where x ∈ (0,∞) and µ and σ are the mean and standard
deviation of ln x then it is impossible to find the expecta-
tion of X + Y where X and Y are two independent log-
normal random variables unlike the Normal distribution
which is given by

f (x) =
1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}

, (18)

where x ∈ (−∞,∞) we can find E (X + Y ). For lognor-
mal variables we consider the expectation of the ratio

E
(

X

Y

)
= E (X) E

(
Y −1

)
.

Therefore it can be shown that the ratio has the lognormal
distribution

f

(
x

y

)
=

y√
2π (σx − σy) x

(19)

exp

{
−1

2

(
ln x− ln y − (µx − µy)

σx (−σy)

)2
}

.

Therefore we have to define our errors in terms of the
ratio as indicated in (Cohn, 1997).

3.1 Lognormal observational errors

We now consider the case where we have lognormal ob-
servational errors and Normal background errors. There-
fore the conditional pdf is multivariate lognormal. Follow-
ing the justification for the ratio as the variable which we
consider, we define the lognormal errors as

yi = h (x)i εo
i ⇒ εo =

y

h (x)
∼ MLN (0, RL) , (20)

where 0 is a vector of zeros and RL is the multivariate
lognormal covariance matrix




σ2
1 ρ1σ1σ2 . . . ρNo−1σ1σNo

ρ1σ2σ1 σ2
2 . . . ρ2No−3σ2σNo

...
...

. . .
...

ρNo−1σNoσ1 ρ2No−3σNoσ2 . . . σ2
No




(21)
where σi, i = 1, 2, . . . , No are the associated stan-
dard deviations of the components of ln xi, ρj , j =
1, 2, . . . , 1

2
No (No − 1) are the correlations and the vec-

tor division in (20) is componentwise. The reason for the
mean vector being zero is due to the problem that it is not
possible for the statistic that we are approximating to have
the three properties of minimum variance, maximum like-
lihood or be unbiased which we can with the Normal and
most symmetric distributions. We can still find the most
likely state x and have lnx unbiased. In component form
the observational error vector is

εo
i =

yi

hi (x1, x2, . . . , xN )
, (22)

where i = 1, 2, . . . , No.
We now require the multivariate version of the log-

normal distribution. This is given by

f (x) =
1

(2π)
N
2 |RL|

(
No∏
i=1

hi (x)

yi

)
(23)

exp

{
−1

2

(
ln

y

h (x)

)T

RL
−1

(
ln

y

h (x)

)}
.

As we have mentioned and we go into more detail
of the justification in FZ06a, we seek the mode of (23)
rather than the median or the mean. Therefore we solve
the dual problem of finding the minimum of− ln (23). This
then gives us the problem

J (x) =
1

2

(
ln

y

h (x)

)T

RL
−1

(
ln

y

h (x)

)
+

(
ln

y

h (x)

)T

1,

(24)
where 1T =

(
1 1 . . . 1

)
and gives the full cost

function with the Normal background as

J (x) =
1

2
(x− xb)T B−1 (x− xb)

+
1

2

(
ln

y

h (x)

)T

RL
−1

(
ln

y

h (x)

)

+

(
ln

y

h (x)

)T

1, (25)

where B is the background covariance matrix and xb is
some background state vector.

It is shown in FZ06a that the Jacobian of (25) is

∂J

∂x
= B−1 (x− xb)−ĤT RL

−1

(
ln

y

h (x)

)
−ĤT 1, (26)



where Ĥ is similar to the Jacobian of the observation op-
erator as for Normal errors and is defined as

Ĥ =




1

h1

∂h1

∂x1

1

h1

∂h1

∂x2
. . .

1

h1

∂h1

∂xN
1

h2

∂h2

∂x1

1

h2

∂h2

∂x2
. . .

1

h2

∂h2

∂xN
...

...
. . .

...
1

hNo

∂hNo

∂x1

1

hNo

∂hNo

∂x2
. . .

1

hNo

∂hNo

∂xN




,

(27)
and is of dimensions N ×No.

It is possible to rearrange (26) to able to find the
mode of the analysis distribution given by

x = xb + BĤT

(
RL

−1 ln
y

h (x)
+ 1

)
. (28)

However, (28) has the observation operator evaluated at
the state that we seek. We now introduce a linearisation
to lnh (x) such that

− lnh (x) ≈ − lnh (xb)− Ĥ (x− xb) . (29)

We also have the term ln
y

h(x)

T
1 to linearise. This term

is also represented by

(
ln

y

h (x)

)T

1 ≡
No∑
i=1

ln
yi

hi (x)
, (30)

therefore we need to linearise the sum in (30). We ac-
complish this by using the following first order in terms of
partial derivatives of x approximation

No∑
i=1

ln
yi

hi (x)
≈ (31)

No∑
i=1

(
ln

yi

hi
− 1

hi

∂hi

∂xb
(x− xb)

+
1

2
(x− xb)T 1

h2
i

(
∂hi

∂xb

)(
∂hi

∂xb

)T

(x− xb)

)
.

It is possible to write the summation in (31) in terms of
matrix multiplications given by

No∑
i=1

ln
yi

hi (x)
≈

(
ln

y

h (xb)

)T

1− (x− xb)T ĤT 1

+
1

2
(x− xb)T ĤT Ĥ (x− xb) . (32)

Substituting (29) and (32) into (26) allows the lin-
earised cost function to be written as

J (x) =
1

2
(x− xb)T B−1 (x− xb) (33)

+
1

2

(
ln

y

h (xb)

)T

RL
−1

(
ln

y

h (xb)

)

− (x− xb)T ĤT RL
−1

(
ln

y

h (xb)

)

+

(
ln

y

h (xb)
− Ĥ (x− xb)

)T

1

+
1

2
(x− xb)T ĤT Ĥ (x− xb) .

The Jacobian of (33) is

∂J

∂x
= B−1 (x− xb)− ĤRL

−1

(
ln

y

h (xb)

)
(34)

+ ĤT RL
−1Ĥ (x− xb)− ĤT 1 + ĤT Ĥ (x− xb) .

Therefore rearranging to find the minimum gives

x = xb +
(
I + BĤT RL

−1Ĥ + BĤT Ĥ
)−1 ×(

BĤT RL
−1 ln

y

h (xb)
+ BĤT 1

)
. (35)

Therefore we have been able to show that most of the fa-
miliar expressions from the Normal framework cross over
to the lognormal framework. In FZ06a we present the
Hessian matrix for (25) where the first order derivative
terms are those that are present in the inversion in (35).
The advantage of this means that we are able to gener-
ate a form of Hessian preconditioning, (Zupanski, 2005),
to aid in the minimisation. We go into more detail about
this preconditioner in Section 5.

4. Hybrid Normal-lognormal Errors

In (Fletcher and Zupanski, 2006b) we present and prove
that we can have a multivariate hybrid distribution of p
Normal variates and q lognormal variates. The multivari-
ate version is given by

fp,q (x) ≡ 1

(2π)
N
2 |Rhy|

1
2

(
q∏

i=1

1

xi

)

exp
{
(x̂− µ)T R−1

hy (x̂− µ)
}

, (36)

where R is of the same structure as (21) and

x̂ ≡
(

xp

lnxq

)

and xp ∈ IRp and xq ∈ IRq+. We show in FZ06b that
the expectation of the individual Normal or lognormal dis-
tribution is that of their individual sub-distribution. The
interesting feature is the mode of (36) which keeps the
lognormal components having the same mode as they
would for that type of distribution but the Normal compo-
nents are scaled by the their covariances with the lognor-
mal components,

x̂mo = µ− Rhy

(
0p

1q

)
, (37)

where 0T
p =

(
0 0 . . . 0

)
has dimensions p× 1.

Following the same justification as for the multivari-
ate lognormal distribution we seek the mode of (36) for



the observational conditional pdf following this hybrid dis-
tribution and as such we seek the minimum of the dual
problem given by

Jhy (x) =
1

2
(x− xb)T B−1 (x− xb)

+
1

2
ε̃oT R−1

hy ε̃o + ε̃o

(
0p

1q

)
, (38)

where

ε̃o =

(
yp − hp (x)

lnyq − lnhq (x)

)
. (39)

We can easily find the Jacobian of (38) as

∂Jhy

∂x
= B−1 (x− xb)− H̃T R−1

hy ε̃o − ĤT
q 1q, (40)

where

H̃ =

(
Hp

Ĥq

)
, H = p×N and Ĥ = q ×N,

where Hp is as defined by (14) and Ĥq is defined by (27).
The Hessian of (38) is given by
(

∂2Jhy

∂x2

)

ij

=
[
B−1 + H̃T R−1

hy H̃ + ĤT
q Ĥq

]
i,j

−
[
G̃R−1

hy ε̃o
]

i
−

[
Ḡ

]
i,j

, (41)

where

G̃ =

(
Gp

Ĝq

)
,

Gi,j =
∂2hi

∂xj∂xi
, i = 1, 2, . . . , p

j = 1, 2, . . . , N,

Ĝi,j =
1

hi

∂2hi

∂xi∂xj
, i = p + 1, p + 2, . . . , No,

j = 1, 2, . . . , N,

Ḡi,j =

No∑
k=p+1

1

hk

∂2hk

∂xi∂xj
, i = 1, 2, . . . , N

j = 1, 2, . . . , N.

To find the solution we introduce the following three
linearisations to the relative components

hp (x) ≈ hp (xb) + Hp (x− xb) , (42)

lnhq (x) ≈ lnhq (xb) + Ĥq (x− xb) , (43)

(lnhq)
T 1q ≈ (lnhq (xb))T 1q + (x− xb)T ĤT

q 1q

− 1

2
(x− xb)T ĤT

q Ĥq (x− xb) . (44)

If we now substitute (42), (43) and (44) into (38) and (39)
we have

Jhy (x) =
1

2
(x− xb)T B−1 (x− xb)

+
1

2
ε̃oT R−1

hy ε̃o − (x− xb)T H̃T R−1
hy ε̃o

+
1

2
(x− xb)T H̃T R−1

hy H̃ (x− xb)

+

(
ln

yq

hq
(xb)

)T

1q − (x− xb)T ĤT
q 1q

+
1

2
(x− xb)T ĤT

q Ĥq (x− xb) , (45)

where ε̂o is evaluated at xb. Taking the first derivative
with respect to x yields

0 =
(
B−1 + H̃T R−1

hy H̃ + ĤT
q Ĥq

)
(x− xb)

−
(
H̃T R−1

hy ε̃o + ĤT
q 1q

)
. (46)

We can easily rearrange (46) to find the solution

x = xb +
(
I + BH̃T R−1

hy H̃ + BĤT
q Ĥq

)−1

×
(
BH̃T R−1

hy ε̃o + BĤT
q 1q

)
. (47)

Therefore most of the minimisation techniques that
we use for the Normal minimisation techniques can be
applied to both the multivariate lognormal and the mul-
tivariate hybrid distribution. As we have mentioned, the
advantage of this hybrid distribution is that it allows us
two assimilate to different variable types at the same time
rather than separating them to their individual distribution
type of transform the variable into a Gaussian variable.

Before we move onto the penultimate section we
have a word of waring about this last practice. Although
it is true that if X is lognormal then ln X is Normal but if
we seek the so call mode for ln X we are actually finding
the median not the mode. Therefore when we transform
back to the lognormal or model variable then we have per-
formed our analysis about the median not the mode and
therefore we are making different conclusions to what we
think we are actually performing.

5. Maximum Likelihood Ensemble Filter

The Maximum Likelihood Ensemble Filter, MLEF, (Zu-
panski, 2005), has a similar structure to the Ensemble
Kalman Tranform Filter, ETKF, (Bishop et al., 2001) and
could be consider to be in a family of these types of filter
but has a major difference in the fact that it uses the most
likely state rather than the ensemble mean.

This most likely state or mode of the analysis proba-
bility distribution currently if we have all Gaussian errors
is found by solving a version of a cost function similar to
(12). The cost function is similar in that it appears to be
the same but the background covariance matrix is evalu-
ated in ensemble space and not the full model space.

To verify this statement we shall provide a brief sum-
mary of the derivation of the MLEF.

5.1 Derivation of the MLEF

The starting point for the derivation of the filter is from an
approximation to the forecast error covariance evolution
of the discrete Kalman Filter with Gaussian errors given
by

Pf (k) = Mk−1,kPa (k − 1) MT
k−1,k + Q (k − 1) , (48)



where Pf is the forecast error covariance matrix, M is
the non-linear model matrix, Pa is the analysis covariance
matrix and Q is the Gaussian model error covariance ma-
trix. We make the assumption at this point of the develop-
ment of the filter to set the model error to zero. We now
factorise Pf into its square root components,P

1
2

f ,

Pf = MPaMT =
(
MP

1
2

a

)(
MP

1
2

a

)T

= P
1
2

f P
T
2

f , (49)

where P
1
2

a is the square root analysis covariance matrix.
We assume that this matrix can be written as

P
1
2

a =
(

p1 p2 . . . pS

)
, pi =




p1,i

p2,i

...
pN,i


 , (50)

where S is the total number of ensembles and such that
S << N . Substituting (50) into (49) gives

P
1
2

f =
(

b1 b2 . . . bS

)
,

bi = M (xk−1 + pi)−M (xk−1) ≈ Mpi, (51)

where xk−1 is the analysis from the previous cycle at time

tk−1. An important thing to note here is the fact that P
1
2

f

is obtained from S non-linear ensemble forecast runs and
one control run. We also use these columns to initiate
the ensembles for the next analysis cycle and hence the
forecast error covariance matrix brings a form of flow de-
pendency into the error analysis.

We now address how we find xk−1. As we mention
the filter seeks the most likely dynamical state and hence
we require the mode of the analysis pdf. We therefore
use (12) to find xk−1 but now defined as

J (x) =
1

2
(x− xb)T P−1

f (x− xb)

+
1

2
(y − h (x))T R−1 (y − h (x)) , (52)

However, we do have P−1
f but we do have P

1
2

f . We there-
fore introduce a Hessian preconditioner

x− xb = P
1
2

f (I + C)−
T
2 ζ, (53)

where ζ is the control variable defined in ensemble sub-
space and

C = P
1
2

f HT R−1HP
1
2

f =
(
R−

1
2 HP

1
2

f

)T (
R−

1
2 HP

1
2

f

)
.

(54)
We have the practical question of how do we define

the matrix multiplication. In the previous analysis cycle

P
1
2

f is calculated as part of the algorithm. We therefore

know the columns of P
1
2

f and this helps us towards the

calculation of (I + C)−
T
2 . We there introduce the vector

zi which is defined as

zi =
(
R−

1
2 HP

1
2

f

)
i
= R−

1
2 Hbi

≈ R−
1
2 (h (x + bi)− h (x)) . (55)

With this approximation in (55) we define the C matrix as

C =




zT
1 z1 zT

1 z2 . . . zT
1 zS

zT
2 z1 zT

2 z2 . . . zT
2 zS

...
...

. . .
...

zT
S z1 zT

S z2 . . . zT
S zS


 . (56)

The advantage of this way of writing the matrix this way is
that it is a symmetric matrix and hence has an orthogonal
eigenvalue decomposition. This then enables us to write
C as C = V ΛV T where V is the matrix of the orthogonal
eigenvectors of C and Λ is a diagonal matrix containing
the eigenvalues of C. This then enables us to calculate

(I + C)−
T
2 = V (I + Λ)−

1
2 V T . (57)

The final details of the algorithm can be found in (Zu-
panski, 2005) and as such we will not go into the techni-
cal parts but just to say when the minimum value of the
transformed version of the cost function is found by sub-
stituting (53) into (12) we update the analysis covariance
square root matrix as

P
1
2

a = P
1
2

f (I + C (xopt))
−T

2 . (58)

We now consider how to form the Hessian precon-
ditioner for the multivariate lognormal situation as well as
the hybrid error distribution.

5.2 Lognormal and Hybrid errors Hessian precondi-
tioning

We start by considering the two definitions we have for
the Hessians associated with the two error types. For
multivariate lognormal error we have

GL = P−1
f + ĤT R−1

L Ĥ + ĤT Ĥ, (59)

and for the hybrid the Hessian is

Ghy = P−1
f + H̃T R−1

hy H̃ + ĤT
q Ĥq. (60)

If we now pre-multiply (59) and (60) by P
T
2

f and post

multiply by P
1
2

f then we obtain

GL = I + P
T
2

f ĤT R−1
L ĤP

1
2

f + P
T
2

f ĤT ĤP
1
2

f , (61)

Ghy = I + P
T
2

f H̃T R−1
hy H̃P

1
2

f + P
T
2

f ĤT
q ĤqP

1
2

f . (62)

This then means we can write (61) and (62) as

GL = I + CL, (63)

Ghy = I + Chy. (64)

From (59) and (62) we can now define the two new
Hessian preconditioners as

x− xb = P
1
2

f (I + CL)−
T
2 ζL, (65)

x− xb = P
1
2

f (I + Chy)−
T
2 ζhy. (66)



We also can apply the same approximation that we use
for the Gaussian case for the other two distributions

CL =
(
R
− 1

2
L ĤP

1
2

f

)T (
R
− 1

2
L ĤP

1
2

f

)

+
(
ĤP

1
2

f

)T (
ĤP

1
2

f

)
, (67)

Chy =
(
R
− 1

2
L H̃P

1
2

f

)T (
R
− 1

2
L H̃P

1
2

f

)

+
(
ĤqP

1
2

f

)T (
ĤqP

1
2

f

)
. (68)

However, this is not the most effective way to approximate
the CL matrix. We can also write (67) as

CL = P
T
2

f ĤT
(
RL

−1 + I
)
ĤP

1
2

f (69)

=
((

R−1
L + I

) 1
2 ĤP

1
2

f

)T ((
R−1

L + I
) 1

2 ĤP
1
2

f

)
.

From this we introduce the vector z this time as

zi =
((

R−1
L + I

) 1
2 ĤT P

1
2

f

)
i
=

(
R−1

L + I
) 1

2 Ĥbi

≈
(
R−1

L + I
) 1

2

(
h (x + bi)− h (x)

h (x)

)
. (70)

The manipulation of (69) for the hybrid distribution is

Chy = P
T
2

f H̃T
(
R−1

hy + Ĩ
)
H̃P

1
2

f (71)

=
((

R−1
hy + Ĩ

) 1
2 H̃P

1
2

f

)T ((
R−1

hy + Ĩ
) 1

2 H̃P
1
2

f

)
,

where

Ĩ =

(
0p×p 0p×q

0q×p Iq×q

)
.

We can again find a column approximation to the Chy

matrix as follows

zi (l) ≈





R
− 1

2
hy (hl (x + bi)− hl (x)) ,

1 ≤ l ≤ p,

(
R−1

hy + Ĩ
) 1

2

(
hl(x+bi)−hl(x)

hl(x)

)
,

p < l ≤ No.

(72)

Therefore, from (70) and (72) we can generate the as-
sociated C matrix as given by (56). We can therefore
carrying on using the eigenvalue decomposition to find
the inversion associated with the Hessian precondition-
ing and hence solve the associated cost functions (25)
and (38).

6. Conclusions and Further Work

In this extended abstract we have expanded on the ideas
set out in FZ06a and FZ06b to do with the problem of
how to assimilate data that is non-Gaussian distributed.

In FZ06a we tackle the problem of how to assimilate vari-
ables which are lognormal. It is a common misconception
that we only have to worry about the errors being from the
type of distribution that we are concerned with. This is not
true. At the heart of this misconception is the assump-
tion that the difference between to Gaussian variables is
a Gaussian itself.

If we consider a lognormal variable then we have the
problem that the difference between two lognormal vari-
ables is itself not lognormal. We have to consider with
the product or the ratio to have this new variable as be-
ing lognormal. In Section 3 we summarise the results
from FZ06a dealing with which is the best statistic to use
to monitor a non-Gaussian distribution. We make the
asscertion that the mode is the correct statistic as it is
bounded, is a function of the covariances and the vari-
ances but also it is uniquely determined.

Another worrying chain of thought that has been ap-
plied to non-Gaussian data is to transform it into Gaus-
sian, for the lognormal variable X simply ln X and then
find the mode of ln X. The problem with this is that in the
Gaussian case then

mode = median = mean

and although we set up the problem to find the mode we
are also finding the median as well. When we change
back into lognormal space where our state or observa-
tion variables are we actually transform back to one of the
non-unique medians of the multivariate lognormal distri-
bution where we forget that for non-symmetric distribu-
tions we have

mode ≤ median ≤ mean.

A key feature of multivariate lognormal distribution is
that the Jacobian and the Hessian appear to have similar
structures to that of their Gaussian counterparts. This is
also true for the hybrid distribution we introduce in Section
4, FZ06b. This hybrid enables us to assimilate the Gaus-
sian and lognormal variables simultaneously and allows
for covariances between the two different types.

Although the later sections deals with the implemen-
tation of the lognormal and hybrid distribution into the
MLEF all of this theory is applicable to 3D and 4D vari-
ational methods as well as ensemble methods based on
distribution theory.

The plans for this work is to introduce lognormal ob-
servational height errors in to CSU’s 2D shallow water
equations model on the sphere, (Heikes and Randall,
1995a; Heikes and Randall, 1995b) with the improved
dynamics, (Ringler and Randall, 2002) combined with dif-
ferent Rossby-Haurwitz waves, (Williams et al., 1992).
These waves are known to support different dynamics
that are present in a full 3D primitive equations model
and are well understood to be a first method of testing
new ideas before applying to the larger more complicated
models.

There are three experiments that we wish to com-
pare between:



1. Assimilate lognormal errors in a Gaussian frame-
work

2. Assimilate lognormal and then Gaussian variables
separately

3. Assimilate using the hybrid distribution framework

By addressing these three problems we can identify any
extra errors that are being introduced by incorrectly as-
similating the errors by the wrong type.

Further research is possible in developing more hy-
brid distributions between the Gaussian distribution and
other more complicated distributions say the Gamma or
the Rayleigh. More work is needed on identifying what
distribution the data is from so we can then firstly define
the correct type of error i.e. additive or multiplicative and
then develop the cost function for that distribution cor-
rectly and then finally develop the hybrid distribution be-
tween that distribution and the Gaussian.
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