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1. INTRODUCTION* 
 

A short-range multimodel ensemble 
forecasting system was developed and run during 
the summers of 2002-2004 in support of a 
National Oceanic and Atmospheric 
Administration program to improve near surface 
forecasts over the New England region.  One of 
the goals of this project is to assess the potential 
for a short-range ensemble forecasting system to 
provide improved near surface predictions when 
compared against the statistical postprocessing 
routinely available from present operational 
models.  In the United States, a multiple linear 
regression approach, called model output 
statistics (MOS;  Glahn and Lowry 1972;  Jacks 
et al. 1990) has been in use for three decades, 
and presently is used to postprocess forecasts of 
the nested grid model (NGM), Eta Model (ETA), 
and the aviation (AVN) run of the Global 
Spectral Model for hundreds of individual station 
locations.  The MOS forecasts of near surface 
variables, such as 2-m temperature and dewpoint 
temperature, 10-m winds, and rainfall are more 
accurate than the raw model forecasts (Jacks et 
al. 1990) and are considered the standard by 
which to compare other techniques for predicting 
these variables in the United States.   

One of the difficulties in implementing a 
MOS approach is that the data archive required 
to develop the regression equations must cover 
several seasons during which the numerical 
model remains unchanged.  When models are 
updated frequently, as is typically the case at 
present operational centers, the requirement of a 
lengthy data archive makes implementing a 
MOS approach difficult and has led to 
approaches that neglect the model changes (Hart 
et al. 2004), the development of techniques that 
account for model changes (Ross 1989;  Wilson  
and Vallée 2002), and the exploration of 
alternative approaches that do not require a long  
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data archive (Homleid 1995;  Mao et al. 1999).  
One approach that has shown success recently is 
a bias-corrected multimodel ensemble system  in 
which a simple running mean bias correction is 
applied individually to each ensemble member 
(Stensrud and Yussouf 2003, 2005;  Eckel and 
Mass 2005).  This bias correction approach is 
easy to implement, assuming that output from a 
short-range ensemble system is available, and 
delivers postprocessed forecasts within a few 
weeks of first receiving the operational ensemble 
forecasts.   

To illustrate the value of bias-corrected 
forecasts of 2-m temperature and dewpoint 
temperature and 10-m winds, bias-corrected 
forecasts are produced from the available 
ensemble members during the summer of 2003.  
These data also allow us to explore the value of 
mutimodel ensembles.  Ensemble data from 
2004 are used to investigate a new method for 
developing reliable probabilistic quantitative 
precipitation forecasts (PQPFs) from a short-
range ensemble system.   Results of the adjusted 
forecasts for both near surface variables and 
rainfall totals illustrate the great value that can be 
added to ensemble forecasts by simple post-
processing techniques.   

 
2.  DATA 
 
 The data used in this study cover much 

of the summer seasons of 2003 and 2004.  The 
data from 2003 are used to develop a 
postprocessing approach for near surface 
variables, such as 2-m temperature and dewpoint 
temperature and 10-m winds.  The data from 
2004 are used to develop a postprocessing 
approach for accumulated rainfall for periods as 
short as 3 h and as long as 48 h.  The reason for 
the two different summers is that we developed 
the near surface postprocessing technique during 
the fall of 2003 and only after the successful 
completion of this project did we start work on 
the postprocessing technique for rainfall during 
the fall of 2004.  Thus, we simply used the most 
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recent ensemble forecast data to develop the 
respective techniques.  

 
a.  2003 ensemble system 
The models used in the 2003 ensemble 

system are the National Centers for 
Environmental Prediction (NCEP) Eta model 
(Black 1994), the regional spectral model (RSM:  
Juang and Kanamitsu 1994), the Rapid Update 
Cycle model (RUC:  Benjamin et al. 1994, 
2001), and the Weather Research and Forecast 
model (WRF:  Klemp 2004).  Up to 31 different 
forecasts are available at 3 h intervals starting 
from 1200 UTC and out to 48 h, depending upon 
the availability of the model forecasts in real 
time.  The inclusion of the RUC and WRF model 
forecasts allows us to more clearly explore the 
importance of model diversity to forecast skill.  
The forecast data are available from 23 July 
through 15 September 2003, for a total of 55 
forecast cases.    

 Sixteen of the model forecasts are 
from the Eta Model, with 15 forecasts from a 32-
km version used in an experimental short-range 
ensemble system and one forecast from the 12-
km operational version.  The 15 ensemble 
forecasts are started at 0600 UTC and use both 
the breeding of growing modes technique (Toth 
and Kalnay 1993, 1997) and perturbations to the 
model convective parameterization and 
microphysics schemes (Du et al. 2004).  While 
the details are found in Du et al. (2004), the 15 
ensemble members use either the control initial 
condition (3 runs) or perturbations from two 
breeding of growing mode pairs (6 runs per 
pair), and use either the Betts-Miller-Janjic, 
relaxed Arakawa Schubert, or Kain-Fritsch 
convective parameterization schemes with a 
version of the Ferrier microphysics (Ferrier 
2004).  The 12-km operational Eta Model 
forecast is started at 1200 UTC.  In addition, 
seven forecasts are from the 32-km RSM that 
starts at 0600 UTC and again contain both initial 
condition (bred modes) and model convective 
scheme perturbations in which either the simple 
Arakawa-Schubert or the relaxed Arakawa-
Schubert schemes are used (Du et al. 2004).  
These 23 ensemble members are later grouped 
together as a subset of the full ensemble and 
designated the NCEP ensemble.   

The full 31-member ensemble contains 
another 8 model forecasts from model versions 
that are not operational.  Four additional 
forecasts are from two 22-km versions of the Eta 
Model that use either the Betts-Miller-Janjic 
(Eta) or the Kain-Fritsch (EtaKF) convective 

parameterization schemes.  These two versions 
of the 22-km Eta Model are started from both the 
0000 UTC Eta Model and Global Forecast 
System (GFS) initial conditions, and use a 
smaller horizontal domain than the operational 
Eta Model (Kain et al. 2001).  Two forecasts are 
from the RUC started at 1200 UTC, one using a 
10-km grid over just the northeastern United 
States and the other using a 20-km grid over the 
contiguous 48 states.  The 20-km RUC forecasts 
use an initial condition created by an optimal 
interpolation scheme (Benjamin 1989), while 
boundary conditions are provided by the Eta 
Model forecasts.  The 10-km RUC uses the 20-
km RUC data for initial and boundary 
conditions.  The final two forecasts are from the 
WRF model started at 1200 UTC, with one 
version again using a 10 km grid over just the 
northeastern United States and the other using a 
20 km grid over the contiguous 48 states.  The 
initial and boundary condition data are the same 
as for the RUC forecasts.  All the models, except 
for the 10 km RUC and WRF forecasts, have 
domains that cover the contiguous 48 states.   

 
b.  2004 ensemble system 
The models used in the short-range 

ensemble for 2004 are only the NCEP Eta Model 
and the NCEP RSM.  This ensemble this 
experiment consists of 16 members, with 15 
members are from the operational SREF system 
(McQueen et al. 2005) and the other member is 
the 12-km operational Eta Model.  The 12-km 
Eta Model starts at 1200 UTC each day, whereas 
the 15 member SREF ensemble forecasts start at 
0900 UTC each day.  Ten of the SREF members 
are from the 32-km Eta Model (Black 1994), 
with the remaining 5 members from the 40-km 
regional spectral model (RSM: Juang and 
Kamanitsu 1994).  The Eta Model SREF system 
forecasts contain two runs from the control 
initial condition and eight runs using 
perturbations from two breeding of growing 
mode pairs (Toth and Kalnay 1997).  These runs 
use either the Betts-Miller-Janjic, or the Kain-
Fritsch convective parameterization schemes.   
The RSM runs contain both initial condition (one 
run) and model convective scheme perturbations 
in which either the simple Arakawa-Schubert or 
the relaxed Arakawa-Schubert schemes (2 runs 
per pair) are used.   The RSM runs also include 
two perturbation pairs from the breeding of 
growing mode technique.  The data collection for 
this summer started on 1 June and ended on 15 
September 2004 for a total of 107 forecast days. 
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c.  Temperature and wind observations 
To compare the model results against 

surface observations of temperature, dewpoint 
temperature, and wind speed, the model data are 
bilinearly interpolated to the NWS observing 
station locations.  A total of 1892 surface 
stations are available across the United States, 
Canada, and Mexico (Fig. 1) to use in 
determining the bias correction and for 
verification.  Similarity theory (Stull 1988) is 
used to interpolate from the lowest model level 
to a 2-m height for temperature and dewpoint 
temperature and to a 10-m height for wind in a 
manner that is consistent with the model 
planetary boundary layer scheme.  Owing to 
computer problems, one or more model forecasts 
may be unavailable on a given day, in which 
case the ensemble is created from the remaining 
members.   

 

 
Fig. 1.  Map of the United States indicating the 
locations of the stations used in the bias 
correction approach (dots), and the six regions 
into which the model data are divided to 
evaluate the spread-skill relationship.  These 
regions are northwest (NW), northcentral (NC), 
northeast (NE), southwest (SW), southcentral 
(SC), and southeast (SE).   

 
The surface observations used in 

determining the bias correction and in the 
verification of the forecasts are not quality 
controlled in any manner beyond that done by 
the National Weather Service.  However, 
observational errors should be more detrimental 
to the verification of the bias correction approach 
than to MOS, since the observational error 
influences not only the forecast verification on 
the day of the error, but also influences the 
magnitude of the bias correction applied to the 
forecasts over subsequent days.  Thus, improved 
quality control of the observations should act to 
further improve the bias correction approach in 
comparison with MOS.   

 
b. Precipitation data 

The national Stage II precipitation analysis 
(Baldwin and Mitchell 1997) developed at NCEP 
is used as the observed precipitation data set for 
this experiment.  It is based on a multi-sensor 
precipitation algorithm developed in the Office 
of Hydrological Development (Seo 1998).  The 
Stage II precipitation analysis is a blend of 
approximately 3000 automated, hourly rain 
gauge observations with hourly rainfall 
estimations from approximately 140 WSR-88D 
radars over contiguous United States (CONUS).  
The data are available on a Hydrologic Rainfall 
Analysis Project (HRAP) map, which uses a 
polar stereographic map projection and has a 
spatial resolution of approximately 4 km × 4 km 
(Schaake 1989).  The Stage II analysis contains a 
high spatial coverage, but it does not have any 
manual quality control steps.  The gauge data 
undergo a few initial quality control steps, 
however, that include a gross error check on the 
gauge data and subjective examination of any 
consistently bad raingages.  The mean biases of 
radar estimates also are removed prior to the 
multi-sensor analysis (Smith and Krajewski 
1991), although no attempts are made to remove 
range-dependent biases. 

 In order to produce a valid comparison of 
the ensemble forecasts against the Stage II 
analyses, it is necessary to place the observed 
precipitation analyses onto the same grid and 
using the same accumulation period.  Therefore, 
the hourly precipitation data are summed to 
produce 3-h accumulated quantitative 
precipitation estimates (QPEs) and then averaged 
to the same 40 km grid as the ensemble 
members.  The averaging is a simple areal mean 
(box average) of all the precipitation values 
within each of the 40 km model grid boxes.  In 
general, there are around 6500 observed grid 
points (Fig. 2) available from this analysis, with 
the total number of points on any given day 
varying due to radar data availability.  The 
ensemble forecasts are evaluated only for points 
at which observations are available.  

 
3.  METHODOLOGY 
 
a.  Temperatures and winds 
 
The bias correction method for temperature, 

dewpoint temperature, and winds uses the past 
complete 12 days of data to calculate the bias of 
each ensemble member at each observation 
station and each forecast hour from 3 h to 48 h at 
3-h intervals. A 12-day window is chosen after 
quantitative evaluation of the data with window 
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lengths varying from 2 to 25 days indicating that 
12-day is a reasonable choice of bias correction 
window length (Stensrud and Yussouf 2005). 
The calculated 12-day bias values are then 
applied to today’s forecast at each station and at 
each forecast hour.  The ensemble mean then 
represents the average value of all the bias 
corrected forecasts.  Since there are over 1800 
station locations used, 17 forecast times, and 31 
models, a total of nearly 1 million bias 
corrections are determined for each 48-h forecast 
cycle. 

 

 
 

Fig. 2.  Map of United States 
indicating the locations of the stage II analysis 
(dots) used as verification data in this study.   
 

b.  Rainfall 
 
For this adjustment technique, 3-h forecast 

precipitation amounts from each ensemble 
member and forecast time over the past 12 days 
are separated into 22 preselected1 bins and the 
observed 3-h precipitation values associated with 
each of these bins are saved.  The location of the 
model grid point is unimportant - only the 
precipitation amount and forecast time matters.  
The number of observed 3-h precipitation 
                                                
1 The bins are 0<p≤0.0125 cm, 0.0125<p≤0.025 
cm, 0.025<p≤0.050 cm, 0.050<p≤0.075 cm, 
0.075<p≤0.10 cm, 0.10<p≤0.125 cm, 
0.125<p≤0.150 cm, 0.150<p≤0.175 cm, 
0.175<p≤0.20 cm, 0.20<p≤0.225 cm, 
0.225<p≤0.25 cm, 0.25<p≤0.50 cm, 0.50<p≤0.75 
cm, 0.75<p≤1.0 cm, 1.0<p≤1.25 cm, 
1.25<p≤1.50 cm, 1.50<p≤1.75 cm, 1.75<p≤2.00 
cm, 2.00<p≤2.25 cm, 2.25<p≤2.50 cm, 
2.50<p≤5.00 cm and 5.00<p≤7.50 cm  (0.0125, 
0.025, 0.050, 0.075, 0.10, 0.125, 0.150, 0.175, 
0.20, 0.225, 0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 
1.75, 2.00, 2.25, 2.50, 5.00 and 7.50 cm equal 
0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 
0.08, 0.09, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 
0.70, 0.80, 0.90, 1.0, 2.0 and 3.0 in, respectively) 

amounts associated with each preselected bin 
varies depending upon the weather patterns 
during the past 12-day period. These stored 
values of observed precipitation amounts within 
each bin are then used to adjust today’s forecasts.  
First, the bin for today’s forecast 3-h 
precipitation amount is determined. Then a 
random selection of an observed precipitation 
amount from the pool of observed values 
associated with this forecast bin is made.  This 
randomly selected observed amount replaces 
today’s model forecast amount at that time and 
grid point.  This is done for all the model grid 
points and individually for each ensemble 
member.  Finally, all the adjusted forecasts are 
averaged to obtain the ensemble mean forecast, 
or used to obtain forecast probabilities.  No 
adjustments are done for precipitation forecasts 
of 0 or of greater than 7.5 cm (3 in) of 
accumulated precipitation.   

In addition to 3-h precipitation, it is of 
interest to evaluate the performance of this 
technique for longer accumulation periods.  
Therefore to obtain 6-, 12-, 24-, and 48-h 
adjusted accumulated precipitation forecasts, the 
adjusted 3-h forecast precipitation amounts 
simply are summed over 6-, 12-, 24-, and 48-h 
periods at each grid point and ensemble member.  

 
4.   RESULTS FOR TEMPERATURE  

AND WINDS 
 
Results indicate that the mean bias-corrected 

ensemble (BCE) forecasts of 2-m temperature 
and dewpoint temperature generally have smaller 
MAE and rmse than either the ETA or AVN 
MOS (Figs. 3, 4).  This is true for all forecast 
times for dewpoint temperature, whereas the 
MOS temperature forecasts can have smaller 
MAE values than the mean BCE during the 
nighttime hours (18-24 h, and 42-48 h).  Results 
for wind speed are not quite as good, with the 
mean BCE wind speed forecasts generally as 
accurate or better than MOS forecasts during the 
daytime, but can be less accurate at night (not 
shown).  Generally, if the differences in the 
MAE or rmse values of two post processing 
systems at a given forecast time are greater than 
0.1 K or 0.1 m s-1, then a Wilcoxon signed rank 
test (Wilks 1995) using the daily averages of the 
error measures as paired samples indicates that 
the differences are significant at the 95% level.  
Thus, the mean BCE forecasts of 2-m 
temperature and dewpoint temperature are more 
accurate than all of the MOS forecasts during the 
daytime hours at a 95% significance level.  The 
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day-two daytime wind speed forecasts from the 
mean BCE also are more accurate than both the 
MOS forecasts.   

The mean BCE values for the NCEP 
ensemble, which is comprised of only the 23 
model forecasts from versions of the operational 
ensemble models, are not as accurate as the full 
BCE (Figs. 3, 4).  Indeed, while the mean NCEP 
ensemble forecasts are often better than the MOS 
forecasts during some of the daytime hours, and 
are comparable in magnitude to the MOS 
forecasts during the nighttime, the improvement 
is less than that found with the full BCE.  Thus, 
the additional 8 model forecasts from the other 3 
numerical models (RUC, WRF, and 22-km Eta) 
are providing additional information that is 
helpful to the mean ensemble forecasts.   

 

 
Fig. 3.  Values of (a) mean bias (K), (b) mean 
absolute error (K), and (c) root-mean-square 
error (K) plotted as a function of forecast hour 
for 2-m temperature from the full 31 member 
BCE (ENS), the NCEP-only BCE (NCEP), and 
the AVN and ETA MOS.  Results are calculated 
at 1258 station locations.  Further details are 
found in the legend.   

 
Fig. 4.  As in Fig. 3, but for 2-m dewpoint 
temperature forecasts. 
 

One of the main reasons to use an ensemble 
approach to forecasting the weather is to provide 
explicit guidance on the probabilities of various 
weather events.  Murphy and Winkler (1979) 
suggest that forecasts need to be expressed in a 
probabilistic format in order to be used to their 
best advantage, while Richardson (2000) 
illustrates the potential economic value of even 
imperfect probabilistic forecasts.  The value of 
raw forecast probabilities for 2-m temperatures 
and dewpoint temperatures are examined using 
the reliability, or conditional bias, of the 
temperatures exceeding selected threshold 
values.   The probability is determined simply by 
calculating the number of forecast members that 
exceed (or are less than) the selected threshold, 
dividing this number by the total number of 
forecasts in the ensemble, and multiplying by 
100.  Results indicate that the BCE 
underestimates the frequency of occurrence of 2-
m temperatures greater than or equal to 303 K 
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for probabilities less than 60% (Fig. 5).  This 
underestimation is seen for both cooler and 
warmer threshold temperatures as well (not 
shown).  While the raw forecast probabilities for 
2-m dewpoint temperature greater than or equal 
to 285 K also indicate an underestimation of the 
frequency of occurrence for probabilities less 
than 50%, this underestimation is smaller than 
that for temperature (see Stensrud and Yussouf 
2005).  However, as the 2-m dewpoint 
temperature threshold value is decreased, the 
underestimation of the frequency of occurrence 
for the lower probabilities increases (not shown).  
Similar results are seen in the probabilities of 10-
m wind speed equal to or exceeding 6 m s-1 (not 
shown).  The BCE underpredicts probabilities 
less than 25%, but then overpredicts probabilities 
greater than 25%.  Thus, some calibration of 
these probability forecasts is needed. 

 

 
Fig. 5.  Attribute diagram for the BCE forecasts 
of 2-m temperature equal to or exceeding 303 K.  
The inset legend defines the various lines, while 
the inset histogram indicates the frequency of 
usage of each 5% interval forecast probability 
category for the uncalibrated (raw) ensemble.  
Horizontal line indicates the frequency of the 
event in the observed dataset, and the diagonal 
line is the no skill (NS) line.   Lines above the 
diagonal indicate that the ensemble is 
underpredicting the probabilities, while lines 
below the diagonal indicate that the ensemble is 
overpredicting the probabilities.   

 
Hamill and Colucci (1998) suggest that the 

information from a rank histogram can be used 
to calibrate ensemble probability forecasts.  
Unlike the raw probability forecasts, in which 
each forecast member is assumed to have an 
equal probability of occurrence, we use the 

verification rank histogram calculated from all 
stations at each forecast time over the past 12 
complete forecast days to calibrate the ensemble 
probabilities for each station location at each 
forecast time.  This approach is described in 
Stensrud and Yussouf (2005).  It uses the 
verification rank histogram to provide the past 
probabilities for each rank and then assumes that 
these probabilities are linearly distributed 
between the ensemble member forecasts.  
Maximum and minimum Gumbel distributions 
are used to calculate the probabilities of events 
that are either above the last rank or below the 
first rank of the BCE forecasts.   For example, 
with a typical “U” shaped rank histogram, the 
first and last rank are more likely to be observed 
and this information is used in the calculation of 
the probabilities. 

Owing to various computer problems, the 
number of ensemble members available on each 
day is not constant, which leads to rank 
histograms of different sizes during the 12 day 
calculation window.  Having different sizes of 
the rank histograms makes using these data to 
adjust the probabilities very difficult.  Thus, to 
overcome this problem, we assume a constant 20 
ranks regardless of the number of ensemble 
members available.  The location of the 
observation value within the joint, ranked 
distribution of model forecast values plus the 
observation value is determined and then scaled 
to a rank from 1 to 20 [see Stensrud and Yussouf 
(2005) for details].  This is done separately for 
each forecast variable examined.   

Results from the calibrated probability 
forecasts show that the ensemble results are quite 
reliable, leading to consistently smaller Brier 
scores - a mean-square-error of the probability 
forecasts (Wilks 1995) – than the raw probability 
forecasts (Fig. 5).  The Brier score for the BCE 
calibrated 2-m temperature forecasts, using a 
threshold temperature of 303 K, is 0.026, 
increasing very slightly to 0.027 for the raw BCE 
and to 0.028 for the NCEP bias-corrected 
ensemble.  These Brier scores are slightly lower 
than those found from the 2002 pilot program 
(Stensrud and Yussouf 2003).   As discussed in 
Stensrud and Yussouf (2005), the calibrated 
BCE for 2-m dewpoint temperature also shows 
that the calibration successfully improves the 
probability forecasts.  

 
5.  RESULTS FOR RAINFALL 
 
The mean error (bias), mean absolute error 

(MAE), and the root-mean-square error (rmse) 
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(Stanski et al. 1989;  Wilks 1995) at each 
forecast hour are calculated for both the adjusted 
and raw (original) ensemble mean QPFs.  
Statistical significance of the error values is 
determined using the bootstrap technique 
(Mullen and Buizza 2001), where resamples are 
randomly selected from the pool of 95 days for 
each forecast hour and error statistics for each of 
those resamples are generated. This resampling  
procedure is repeated 10,000 times to estimate 
the 90% confidence bounds of the error statistics.  
If the confidence intervals associated with the 
raw and adjusted ensembles do not overlap, then 
assuming a normal distribution the differences 
are significant at more than the 95% level.  
Results indicate that the MAE and bias for the 3-
h adjusted mean QPFs are smaller than the raw 
values at all forecast times whereas the rmse is 
larger at most of the times (not shown).  This 
reflects higher error variances in the adjusted 
mean QPFs.  Results also indicate that the 
differences in bias and MAE are often significant 
at the 95% level while the differences in rmse are 
significant at this level only for several of the 
forecast times.  These results suggest that our 
approach is not producing significantly larger 
errors in the ensemble mean precipitation 
forecasts, even though we are randomly selecting 
observed precipitation amounts from the past 12 
days and associated with grid points across the 
model domain and representing vastly different 
conditions.   

To investigate the behavior of the ensemble 
system, attribute diagrams (Stanski et al. 1989;  
Wilks 1995) for the 3-, 6-, 12-, and 24-h 
precipitation totals with thresholds varying from 
0.0125 to 5.0 cm (0.005 to 2.0 in) are generated 
along with the estimation of 90% confidence 
bounds. These diagrams (Fig. 6) show that the 
PQPFs from the adjusted ensemble system 
consistently outperform the PQPFs of the raw 
ensemble system, and these differences are 
significant at the 95% confidence level when the 
confidence bounds do not overlap.   

The raw ensemble system has no skill for 
the higher precipitation amounts for 3- and 6-h 
accumulation periods, while the adjusted 
ensemble shows good skill and generally very 
reliable PQPFs for lower forecast probability 
values.  For longer accumulation periods, the raw 
ensemble typically is skillful for the smaller 
precipitation thresholds, but continues to have 
little skill for the higher amounts.  In contrast, 
the adjusted ensemble is skillful even for the  
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Fig. 6.  Attribute diagrams for the adjusted (solid 
black line) and raw (solid gray line) ensemble 
probabilities for precipitation equal to or 
exceeding 3-h accumulations of 0.04 inches valid 
at 18 h (top), 6-h accumulations of 0.10 in valid 
at 24 h (second from top), 12-h accumulations of 
0.10 in at 36 h (third from top), and 24-h 
accumulations of 0.5 in at 24 h (bottom).  Error 
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bars indicate the 90% confidence intervals for 
the adjusted (black) and raw (gray) ensembles.   

 
higher precipitation threshold values for lower 
forecast probability values.  These results 
highlight the benefits gained through the simple  
post-processing technique. Note that the several 
large confidence intervals seen in both the raw 
and adjusted PQPFs for some of the higher 
probabilities are due to having very few 
occurrences of these events in the data set. 
 

6. DISCUSSION 
 
A multimodel, multiphysics ensemble 

system consisting of up to 4 different models, 
with variations of physical parameterizations 
also specified within each model, and with a 
variety of different initial and boundary 
conditions, is used to assess the potential for a 
short-range ensemble forecasting system to 
provide improved near surface predictions when 
compared against the statistical postprocessing 
routinely available from present operational 
models and to provide reliable PQPFs.  The 
ensemble forecasts are evaluated using routine 
NWS surface observations from over 1200 
stations in the United States and NCEP Stage II 
analyses.  Results from the short-range ensemble 
systems during the summers of 2003 and 2004 
indicate that using the past complete 12 days of 
forecasts to adjust today’s forecast yields 
ensemble mean forecasts that are better than the  
ETA, and AVN MOS during most of the forecast 
times for 2-m temperature, are better than the 
MOS forecasts at all forecast times for 2-m 
dewpoint temperature, and are comparable to the 
MOS forecasts for 10-m wind speed.  This 12 
day adjustment period also is sufficient to 
provide reliable PQPFs for forecasts from 3 h to 
48 h in duration. Although results of this bias-
correction approach during the cooler seasons 
have not been examined, although Woodcock 
and Engel (2005) show very good results for 
near surface variables using a similar technique 
over a 6-month period from summer into winter.   

 The probabilities produced by the adjusted 
ensembles are skillful and reliable, and 
previously have been found to be valuable when 
evaluated in a cost-loss model (Stensrud and 
Yussouf 2003).  The ensembles further appear to 
provide better guidance for more unlikely events, 
such as very warm temperatures (see Stensrud 
and Yussouf 2005), that likely have the greatest 
economic significance.  Thus, industries that are 
sensitive to the weather, such as power 

companies, transportation, and agriculture, may 
benefit from the probability information 
provided.   

The results presented here indicate that it is 
possible to develop a robust post-processing 
system for new models, when used in 
conjunction with a reasonable short-range 
ensemble forecasting system, that is competitive 
with or better than traditional post-processing 
techniques, such as MOS, that take lengthy data 
archives to develop.  This approach allows for 
the rapid production of useful and accurate 
guidance forecasts of many near surface 
variables and rainfall accumulations once an 
ensemble system is started operationally.  And 
these ensemble-based approaches can be merged 
with the MOS forecasts to incorporate the 
strengths of each approach (Woodcock and 
Engel 2005).   

In an era when model changes and updates 
are frequent, the use of relatively simple and 
computationally rapid postprocessing techniques 
with ensemble forecast model output makes 
good sense and needs to be pursued vigorously 
by operational agencies.  These approaches make 
the best use of the available model forecast data 
and maximize the benefits of model forecasts to 
the public.   
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