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ABSTRACT 
 

The propagation of measurement errors 
through the computation of principal 
components (PC) is treated. In atmospheric 
sciences applications, typically a principal 
component analysis is applied to time 
variations and the associated empirical 
orthogonal functions (EOF) describe the 
spatial patterns. The errors in the EOFs are 
also treated in this paper. 

 
The measurement errors are modeled as 

consisting of a bias plus uncorrelated errors. 
The bias errors appear in the mean 
distribution and do not appear in the PCs or 
EOFs. The variances of the error in an 
eigenvalue is proportional to the variance of 
the measurement errors times the eigenvalue 
and inversely proportional to the number of 
regions. The variances of the errors of the 
PCs are expressed in terms of the PCs, and 
the variances of errors in the PCs are 
proportional to the variance of the 
measurement errors and inversely 
proportional to the number of regions times 
the square of the spacing of the eigenvalues. 

 
1.    INTRODUCTION 

 
Masssive data sets of climatological 

parameters have been compiled and are being 
developed. In particular, satellites provide 
daily coverage of the Earth for many 
parameters. To derive information and 
understanding from these data is a major 
problem. One tool for studying data is principal 
component analysis. Often one has 
measurements at a set of locations and times, 
which constitute a set of maps describing a 
time-varying field. One approach to 
understanding these maps is to extract from 
them temporal and geographic patterns which 
describe as much variance as possible by use 
of principal component analysis (PCA). These 
descriptions are statistical, but are useful 
because the underlying correlations are due to 
the physics of the problem and thus provide 

insight into the physics. In this paper, the term 
empirical orthogonal functions (EOFs), which 
is simply another term for principal 
components, will be used to denote the 
geographical patterns.  

 
Principal components, or EOFs, are the 

eigenvectors of the covariance matrix of the 
data set. They are statistics based on the data 
set and as such are subject to sampling 
errors. The effects of sampling errors on the 
principal components or EOFs have been 
studied by North et al. (1982). Errors in the 
measurements will also result in errors in the 
principal components or EOFs. The present 
paper analyses the errors in the computed 
principal components, which describe the 
temporal variations, and the EOFs, which 
describe the geographical variations, due to 
measurement errors. First a linearized 
analysis of the propagation of errors through 
the computation of the covariance matrix into 
the principal components and EOFs is 
presented. This is a straightforward exercise in 
linear algebra. Next, the application of the 
analysis is demonstrated by computing the 
errors of the principal components 
representing the time-variations of the annual 
cycle of net longwave radiation at the surface 
over the Earth and the corresponding EOFs 
which describe the geographic distributions. 

 
2.  ANALYSIS 

  
In an application of principal component 

analysis or EOFs to analysis of atmospheric 
sciences, one has measurements at a number 
of locations for a set of times (e.g. 
Preisendorfer and Mobley, 1988). These 
values constitute a sequence of maps. One 
begins by defining the sequence of 
measurements at a given point as a vector, so 
that each location on the map has a time-
vector for the field. One then computes the 
temporal mean at each location and subtracts 
this mean to produce a sequence of 
anomalies at each location. The outer product 
of each vector with itself is formed and these 



products are summed over the map to 
produce a covariance matrix for the time-
variations. The eigenvalues and eigenvectors, 
or principal components, of this covariance 
matrix are then computed, and ordered by 
eigenvalue, with the first PC having the largest 
eigenvalue. Each PC is then projected onto 
the sequence of maps to produce an empirical 
orthogonal function (EOF), which is the 
corresponding map. This analysis includes an 
error with the measurement and follows the 
above procedure.  Alternatively, one may form 
a vector for each map at a given time, so that 
one has a sequence of spatial vectors with 
which to compute a covariance matrix in 
space. The principal of duality affirms that the 
results are the same from either path. 

 
2.1 Preliminaries  

 
A set of measurements of a parameter rmg 

is given, where [ ]m M∈ 1,  denotes time 

and [ ]g N∈ 1, denotes the geographical 

location or grid number. In this paper it is 
assumed that the set is complete, i.e. there 
are no data voids or gaps. The parameter is 
partitioned into its mean value rg and an 
anomaly zmg. The measured values of rmg  
contain errors, which will be partitioned into a 
bias error bg for each location and a random 
contribution wmg which varies with each 
measurement and has population mean of 
zero. Thus 

r r z bmg g mg g mg= + + + ε (1) 

The first step of a principal component 
analysis is to compute the mean of the 
parameter for each grid location and to 
subtract this mean from each measurement. 
The computed mean is thus 

r r bg g g g= + + ε              (2) 

where εg = Σwmg/M is the error of the 
mean for region g due to the random error of 
the measurements and is has a standard 

deviation of σwg/ M − 1 . The computed 
anomaly at time m for region g is 

x r r z ymg mg g mg mg= − = +  (3) 

where ymg = wmg - εmg is a random variable 
with sample mean of zero over the M 
measurements and standard deviation  

σyg = σwg 
M
M

−
−

2
1

.  

The bias errors of the measurements thus 
appear in the mean of the computed field and 
not in the computed anomalies. The computed 
anomalies contain only the random 
component of the measurement errors. The 
next step is to compute the covariance matrix 
of the anomalies. 

 
2.2 Covariance Matrix with errors  
 

The covariance matrix for the field is 
defined as 

           ( )C i j w z zg ig jg
g

N

0
1

, =
=

∑  (4) 

and is thus of dimension MxM  The time 
history of values of the parameter rmg for a 
region g define a vector vg of dimension M. 
The C0 matrix for the field can be expressed 
as the sum of the area-weighted outer 
products of the vg: 

            C w v vg g
T

g
g

N

0
1

=
=

∑ . 

The principal components are the 
eigenvectors of C0, given by the relation  

                  Cu u= λ    (5) 
The eigenvectors are defined to be normalized 
such that  

                           u ui
T

i = 1 . 

Because of measurement errors, the zig 
are replaced by xig, whence by eq. (3) the 
covariance matrix becomes 

 ( ) ( )( )C i j w z y z yg ig ig jg jg
g

N

, = + +
=

∑
1

 

             ( ) ( )= +C i j C i j0 , ,δ            (6) 

where δC(i.j) is the first order perturbation of C 
and 

 ( ) ( )δC i j w z y z yg jg ig ig jg
g

N

, = +
=

∑
1

  (7) 

Second order terms in the errors yig have been 
neglected.  
 
2.3  Errors of eigenvalues and eigenvectors 
 

 The effect of a first order perturbation in C 
is to perturb the eigenvalues λi0 and 



eigenvectors ui0  in accordance with eq. (5), 
whence 

δ δ δλ λ δCu C u u ui i i i i i0 0 0 0+ = +  (8) 
The perturbation to the eigenvector is normal 
to the eigenvector, i.e. 

             u ui
T

iδ = 0                            (9) 

Premultiplying eq. (8) by ui
T and using eq. (9) 

gives 

          δλ δi i
T

iu Cu= 0 0                       (10) 
The perturbation of ui can be expressed in 
terms of the eigenvectors as a basis set: 

                     δ αu ui ij j
j i

=
≠

∑                   (11) 

where by eq. (9) the summation excludes the 
i-th eigenvector. Equation (10) is used in eq. 

(9) and the result is premultiplied by u j
T

, 

giving the result that 

            α
δ

λ λik
k

T
i

i k

u Cu
=

−
0 0

0 0

 (12) 

For the present case, the perturbation of 
the covariance matrix, ? C is given by  the 
summation term in eq. (6). 

The mean of yig is zero, so that the mean 
of ? C is zero, whence by eq. (9) the mean 
perturbations of the eigenvalues are zero. 
Likewise, by eqs. (10) and (11), the means of 
the eigenvectors, or principal components, are 
zero. The next question is what are the 
standard deviations of the perturbations of the 
eigenvalues and the principal components. 

The standard deviations of the 
perturbations of the eigenvalues are defined 
as the expected value of  (? ? i)

2. Equation (10) 
is squared and the expected values taken for 
both sides. The following assumptions are 
now made for the measurement errors: 
i.  Measurements errors are independent of 

time or location. 
ii. Measurement errors are uncorrelated in 

space, i.e. one grid point to another. 
iii. Measurement errors are uncorrelated in 

time. 
From these three assumptions,  

             { }E y yig jh e ij gh= σ δ δ2                (13) 

It is also assumed that the weightings for all 
regions are the same, thus wg = 1/N. From 
eqs. (10) and (13) it follows that the variances 
of the changes in the eigenvalues are 

                 σ
σ λ

λk
e k

N
2

24
=                    (14) 

The variance of the error of the i-th 
component of the j-th eigenvector is found by 
use of eq. (11), whence 

        

{ }σ α αuki
q

M

p

M

ip iq kp kqE u u2

11
=

==
∑∑        (15) 

The covariances of the αipαiq are computed by 
use of equations (12) and (14), giving 

{ }E ip iqα α = 0   if  p = i, or q = i, or p q≠  

         

          
( )
( )

=
+

−

σ λ λ

λ λ

ε
2

2
2

i p

i pN
   if   p = q   (16) 

The coupling coefficients Kip are defined as 

 Kip
i p

i p

=
+

−

λ λ

λ λ( ) 2
  for  i p≠             (17) 

              =    0               for  i p=   
These coefficients appear repeatedly in this 
analysis. The variances of errors of the 
eigenvectors are now written as 

σ
σ ε

uki kp
p

M

piN
K u2

2

1

2= ∑
=

         (18) 

Equation (18) applies to the individual 
components of the eigenvector uk. For the 
average of the components of uk, the 
normality condition gives the average over the 

components of u pi
2

as M-1, so that the variance 

of the mean of the components is 

σ
σ

uk
y

kp
p kMN

K2
2

= ∑
≠

         (19) 

 
2.4 Errors of EOFs:  

 
Once the eigenvectors, or principal 

components, have been computed, the 
corresponding EOFs, or geographic patterns, 
can be computed as  

          F u zkg km mg
m

M

=
=

∑
1

       (20) 

The effects of measurement errors are to add 
an error to the zmg and also to change the 
eigenvectors, so the perturbation in the EOF is  

    δ ε δF u u zkg km mg km mg
m

M

= +
=

∑ ( )
1

 



The variance of the perturbation is 
     

σ δ δ δ δFkg kp pg qg kq pg kp kq qg kp pg kq qg kp pg kq qg
q

M

p

M
u E y y u z E u u z u E y u z u E y u z2

11
= + + +∑∑

==
( { } { } { } { } )

       
+ u E y u z u E y u zkp pg kq qg kp pg kq qg{ } { }δ δ+ ) 

which reduces to  

σ σFkg y jg kj
m

N F K2 2 2 21= + ∑−[ ]  (21) 

The first term is simply the error at the location 
due to the measurement error and the second 
term is due to the error which is induced in the 
EOFs by the measurement errors. 

 
3.  CONCLUSIONS 
 

An analysis of effects of measurement 
errors on computed PCs and EOFs is 
presented. The measurement errors are 
modeled as consisting of a bias plus 
uncorrelated errors. The bias errors appear in 
the mean distribution and do not appear in the 
PCs or EOFs. The variances of the error in an 
eigenvalue is proportional to the variance of 
the measurement errors times the eigenvalue 
and inversely proportional to the number of 
regions. Errors in the PCs and EOFs are 
written in terms of contamination of PCs by 
each other due to the measurement errors, as 
quantified by interaction coefficients. These 
coefficients are proportional to the sum of the 
eigenvalues of the contaminating and 
contaminated PC and inversely proportional to 
the square of the difference of the 
eigenvalues.  

The variances of the errors of the PCs are 
expressed in terms of the PCs, and the 
variances of errors in the PCs are proportional 
to the variance of the measurement errors and 
the interaction coefficients and inversely 
proportional to the number of regions. The 
variances of the errors in the EOFs, describing 
the spatial patterns, are due to the 
measurement errors directly and also to the 
contamination of EOFs by each other due to 
the measurement errors. This contamination in 
the spatial domain is also described by the 
interaction coefficients. The interaction 
coefficients increase quickly with increasing 
order of the contaminated PC or EOF, so that 
the growth of errors in PCs and EOFs with 
order is very rapid and the high order PCs and 
EOFs become overwhelmed by these errors. 
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5.  APPENDIX: List of Symbols 
 
bg bias of measurement error of region g 
Cij element of covariance matrix 
E{}   expected value of 
e  measurement error 
Fkg value of k-th empirical orthogonal 
function at region g 
M number of times 
N number of regions 
rmg  measurement of region g at time m    
uk  k -th normalized principal component 
vector 
wg area weighting of region g 
xmg random part of measurement error at 
region g and time m 
ymg measurement error of region g at time m 
with bias estimate removed 
zmg anomaly of region g at time m 
? ij interaction coefficient for effect of uj on 
ui 
? i i-th eigenvalue 
? x standard deviation of error in x 
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