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ABSTRACT

The propagation of measurement errors
through  the  computation of  principal
components (PC) is treated. In atmospheric
sciences applications, typically a principal

component analysis is applied to time
variations and the associated empirical
orthogonal functions (EOF) describe the

spatial patterns. The errors in the EOFs are

also treated in this paper.

The measurement errors are modeled as
consisting of a bias plus uncorrelated errors.
The bias errors appear in the mean
distribution and do not appear in the PCs or
EOFs. The variances of the error in an
eigenvalue is proportional to the variance of
the measurement errors times the eigenvalue
and inversely proportional to the number of
regions. The variances of the errors of the
PCs are expressed in terms of the PCs, and
the variances of errors in the PCs are
proportional to the variance of the
measurement errors and inversely
proportional to the number of regions times
the square of the spacing of the eigenvalues.

1. INTRODUCTION

Masssive data sets of climatological
parameters have been compiled and are being
developed. In particular, satellites provide
daily coverage of the Earth for many
parameters. To derive information and
understanding from these data is a major
problem. One tool for studying data is principal
component  analysis. Often one has
measurements at a set of locations and times,
which constitute a set of maps describing a
time-varying  field. One  approach to
understanding these maps is to extract from
them temporal and geographic patterns which
describe as much variance as possible by use
of principal component analysis (PCA). These
descriptions are statistical, but are useful
because the underlying correlations are due to
the physics of the problem and thus provide

insight into the physics. In this paper, the term
empirical orthogonal functions (EOFs), which
is simply another term for principal
components, will be used to denote the
geographical patterns.

Principal components, or EOFs, are the
eigenvectors of the covariance matrix of the
data set. They are statistics based on the data
set and as such are subject to sampling
errors. The effects of sampling errors on the
principal components or EOFs have been
studied by North et al. (1982). Errors in the
measurements will also result in errors in the
principal components or EOFs. The present
paper analyses the errors in the computed
principal components, which describe the
temporal variations, and the EOFs, which
describe the geographical variations, due to
measurement errors. First a linearized
analysis of the propagation of errors through
the computation of the covariance matrix into
the principal components and EOFs is
presented. This is a straightforward exercise in
linear algebra. Next, the application of the
analysis is demonstrated by computing the
errors of the principal components
representing the time-variations of the annual
cycle of net longwave radiation at the surface
over the Earth and the corresponding EOFs
which describe the geographic distributions.

2. ANALYSIS

In an application of principal component
analysis or EOFs to analysis of atmospheric
sciences, one has measurements at a number
of locations for a set of times (e.g.
Preisendorfer and Mobley, 1988). These
values constitute a sequence of maps. One
begins by defining the sequence of
measurements at a given point as a vector, so
that each location on the map has a time-
vector for the field. One then computes the
temporal mean at each location and subtracts
this mean to produce a sequence of
anomalies at each location. The outer product
of each vector with itself is formed and these



products are summed over the map to
produce a covariance matrix for the time-
variations. The eigenvalues and eigenvectors,
or principal components, of this covariance
matrix are then computed, and ordered by
eigenvalue, with the first PC having the largest
eigenvalue. Each PC is then projected onto
the sequence of maps to produce an empirical
orthogonal function (EOF), which is the
corresponding map. This analysis includes an
error with the measurement and follows the
above procedure. Alternatively, one may form
a vector for each map at a given time, so that
one has a sequence of spatial vectors with
which to compute a covariance matrix in
space. The principal of duality affirms that the
results are the same from either path.

2.1 Preliminaries

A set of measurements of a parameter ryy
is given, where mi [1, I\/I] denotes time

andg| [1,N]denotes the  geographical
location or grid number. In this paper it is
assumed that the set is complete, i.e. there
are no data voids or gaps. The parameter is
partitioned into its mean value ry and an
anomaly zng. The measured values of ryy
contain errors, which will be partitioned into a
bias error by for each location and a random
contribution Wy which varies with each
measurement and has population mean of
zero. Thus

rm:rg+zrng+bg+emg (1)

The first step of a principal component
analysis is to compute the mean of the
parameter for each grid location and to
subtract this mean from each measurement.
The computed mean is thus

<rg> =r,th, +e 2

where g = Swmg/M is the error of the
mean for region g due to the random error of
the measurements and is has a standard

deviation of sug/vM - 1. The computed
anomaly at time m for region g is

Xmg = Tmg - <rg>: Zog * Yimg
where ymg = Wmg - 6y IS a random variable

with sample mean of zero over the M
measurements and standard deviation

M- 2

M-1"

The bias errors of the measurements thus
appear in the mean of the computed field and
not in the computed anomalies. The computed
anomalies contain  only the random
component of the measurement errors. The
next step is to compute the covariance matrix
of the anomalies.

Syg = Swg

2.2 Covariance Matrix with errors

The covariance matrix for the field is
defined as

N
o}

Cli.i)=a wzz, @
g:
and is thus of dimension MxM The time
history of values of the parameter ryy for a
region g define a vector vy of dimension M.
The C, matrix for the field can be expressed
as the sum of the area-weighted outer
products of the vy
N

2 T
C=a WV, V-
g=1
The principal components are the
eigenvectors of Cy, given by the relation
Cu=1lu (5)
The eigenvectors are defined to be normalized
such that
u'y=1.
Because of measurement errors, the zj

are replaced by xg whence by eq. (3) the
covariance matrix becomes

C(i’ J) = géN:le(ag * yig)(zjg * ng)

=G (i, j)+acli,i)  ©

where dC(i.j) is the first order perturbation of C
and

N
dC(I' J) = alwg(zjg yig + ;gng) (7)
g=

Second order terms in the errors yiq have been
neglected.

©)
2.3 Errors of eigenvalues and eigenvectors

The effect of a first order perturbation in C
is to perturb the eigenvalues 1 and



eigenvectors ujp
whence

dCu, + C,du, =d ,u, + | ;au  (8)
The perturbation to the eigenvector is normal
to the eigenvector, i.e.

u'du =0 ©)
Premultiplying eq. (8) by uiT and using eq. (9)
gives

in accordance with eq. (5),

d, = ujdCu, (10)
The perturbation of u; can be expressed in
terms of the eigenvectors as a basis set:
[0}
du = a a;u, (11)
i
where by eq. (9) the summation excludes the
i-th eigenvector. Equation (10) is used in eq.

(9) and the result is premultiplied by ujT,

giving the result that
Uy, dCu,
ikzlolk_l0 (12)
Oi Ok

For the present case, the perturbation of
the covariance matrix, ?C is given by the
summation term in eq. (6).

The mean of yy is zero, so that the mean
of ?C is zero, whence by eq. (9) the mean
perturbations of the eigenvalues are zero.
Likewise, by egs. (10) and (11), the means of
the eigenvectors, or principal components, are
zero. The next question is what are the
standard deviations of the perturbations of the
eigenvalues and the principal components.

The standard deviations of  the
perturbations of the eigenvalues are defined
as the expected value of (?? i)z. Equation (10)
is squared and the expected values taken for
both sides. The following assumptions are
now made for the measurement errors:

i. Measurements errors are independent of
time or location.

ii. Measurement errors are uncorrelated in
space, i.e. one grid point to another.

iii. Measurement errors are uncorrelated in
time.

From these three assumptions,

-2
E{ yigyjh} = Sedijdgh (13)
It is also assumed that the weightings for all
regions are the same, thus wy; = 1/N. From
egs. (10) and (13) it follows that the variances
of the changes in the eigenvalues are

2
o _4scly

S '« 14)

The variance of the error of the i-th
component of the j-th eigenvector is found by
use of eq. (11), whence

M M

2 _ o O
Sx-aa E{aipaiq} U U (15)

p=lg=1
The covariances of the aja;q are computed by
use of equations (12) and (14), giving

E{aipaiq}:o if p=i,org=i,or pt Q
s +1,)
[ I

The coupling coefficients K, are defined as
[ +1

Kip =——
(i-1p)°

= 0 for i=p
These coefficients appear repeatedly in this

for it p a7

analysis. The variances of errors of the
eigenvectors are now written as
2
sZ M
2 e g 2
s4 = a K, u: (18)
uki N p=1 kp™ pi

Equation (18) applies to the individual
components of the eigenvector uy. For the
average of the components of ug, the
normality condition gives the average over the

2 - .
components of U; as M ! so that the variance
of the mean of the components is

y
Sa T & Ky (19)

2.4 Errors of EOFs:

Once the eigenvectors, or principal
components, have been computed, the
corresponding EOFs, or geographic patterns,
can be computed as

M
Fkg =a UinZing (20)
m=1

The effects of measurement errors are to add
an error to the z,y and also to change the
eigenvectors, so the perturbation in the EOF is

M
dFkg = é (ukmeng + dukmzmg)
m=1



The variance of the perturbation is

2
SFkg_

T ay
e

n=1

+ Uy E{ Y pg Qg } Zgg + Ui EL Y pgdUig} Zgg )
which reduces to
S 2 =S 2[1+ N'Zém Fa Kyl

The first term is simply the error at the location
due to the measurement error and the second
term is due to the error which is induced in the
EOFs by the measurement errors.

3. CONCLUSIONS

An analysis of effects of measurement
errors on computed PCs and EOFs is
presented. The measurement errors are
modeled as consisting of a bias plus
uncorrelated errors. The bias errors appear in
the mean distribution and do not appear in the
PCs or EOFs. The variances of the error in an
eigenvalue is proportional to the variance of
the measurement errors times the eigenvalue
and inversely proportional to the number of
regions. Errors in the PCs and EOFs are
written in terms of contamination of PCs by
each other due to the measurement errors, as
qguantified by interaction coefficients. These
coefficients are proportional to the sum of the
eigenvalues of the contaminating and
contaminated PC and inversely proportional to
the square of the difference of the
eigenvalues.

The variances of the errors of the PCs are
expressed in terms of the PCs, and the
variances of errors in the PCs are proportional
to the variance of the measurement errors and
the interaction coefficients and inversely
proportional to the number of regions. The
variances of the errors in the EOFs, describing
the spatial patterns, are due to the
measurement errors directly and also to the
contamination of EOFs by each other due to
the measurement errors. This contamination in
the spatial domain is also described by the
interaction  coefficients.  The interaction
coefficients increase quickly with increasing
order of the contaminated PC or EOF, so that
the growth of errors in PCs and EOFs with
order is very rapid and the high order PCs and
EOFs become overwhelmed by these errors.
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5. APPENDIX: List of Symbols

by bias of measurement error of region g
Cj  element of covariance matrix

E{} expected value of

e measurement error
Fkg value of k-th
function at region g

M number of times

N number of regions
g~ Measurement of region g at time m

Uy k-th normalized principal component
vector

W,  area weighting of region g

Xmg random part of measurement error at
region g and time m

Ymg Measurement error of region g at time m
with bias estimate removed

Zmg anomaly of region g at time m

empirical  orthogonal

?i interaction coefficient for effect of uj on
ui
?i i-th eigenvalue

?« standard deviation of error in X
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