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1. INTRODUCTION 
 

In a typical year, cloud-to-ground (CG) 
lightning exceeds both tornadoes and hurricanes 
in causing weather related fatalities across the 
United States (U.S.) (Curran et al. 1997).  Aside 
from the loss of life, lightning damages trees, 
buildings, and utility lines, and is one of the 
leading causes of power outages and disruptions 
to communications.  Improved forecasts of the 
timing and location of thunderstorms and 
associated lightning will be helpful to all persons 
concerned with protecting life and property. 

Florida leads the nation in lightning related 
casualties, a majority of which occur during the 
warm season months of May-September.  Many 
studies examining lightning patterns across the 
contiguous U.S. have found that Florida receives 
more CG strikes annually than any other region 
(e.g., Orville and Silver 1997, Orville et al. 2002).  
Thus, Florida deservedly has been labeled the 
“lightning capital” of the U.S.     

Figure 1 shows the spatial distribution of CG 
lightning in Florida for May-September during the 
14-year period 1989-2002 (Stroupe 2003).  
Several areas of enhanced flash density are 
noted, specifically near Tampa Bay and Fort 
Myers on the west coast, as well as Cape 
Canaveral and a region stretching from West Palm 
Beach southward to Miami on the east coast.  
These regions of enhanced flash density are due 
to many complex factors, including irregularly 
shaped and protruding coastlines, and thermal 
circulations such as the sea breeze and lake/river 
breezes (e.g., López and Holle 1987; Arritt 1993; 
Lericos et al. 2002).   

During the warm season, absent of synoptic or 
tropical disturbances, the Atlantic and Gulf of 
Mexico sea breezes act as the primary triggering  
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mechanism for afternoon convection in Florida.  If 
adequate moisture and instability are present, the 
location and amount of afternoon thunderstorms 
are governed primarily by the strength and inland 
extent of the sea breeze, which previous studies 
have shown to be highly dependent on the 
magnitude and direction of the prevailing low-level 
wind (e.g., López and Holle 1987, Camp et al. 
1998, Lericos et al. 2002).        

Lightning related power disruptions are not 
only problematic to customers but can pose major 
problems for the power companies responsible for 
repairing outages.  For example, a company such 
as Florida Power & Light Corporation (FP&L) must 
determine well ahead of time whether lightning is 
likely during the late afternoon and evening within 
their service areas.  If a high lightning threat is 
perceived, extra crews must be retained after 
normal business hours to deal with potential 
disruptions.  If this threat is misjudged, the 
company either will not be able to respond 
effectively to outages, or, conversely, resources 
could be wasted on a threat that does not occur.  

The development of a lightning forecast 
procedure is a difficult problem, since summertime 
convection and lightning over Florida often exhibit 
considerable spatial and temporal variability 
(López et al. 1984).  Even if one could pinpoint the 
exact locations that will experience convection on 
a particular day, these areas may not experience 
the most lightning, since lightning is governed by 
cloud microphysical processes that are poorly 
resolved by numerical models.  Nevertheless, one 
can develop a prediction scheme that will provide 
useful guidance about the location and movement 
of the sea breeze and any associated convection, 
and, therefore, the likelihood and amount of 
afternoon and evening lightning, based on past 
events under similar atmospheric conditions.   

Many studies have found statistical models to 
be useful for predicting warm season 
thunderstorms and lightning.  Some of the 
statistical methods that have been used include 
multiple linear regression (MLR), binary logistic   
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FIG. 1.  Map of the spatial distribution of warm season 
CG lightning (flashes km-2 warm season-1) for the state 
of Florida during a 14-year period from 1989-2002.  Map 
obtained from http://bertha.met.fsu.edu/~jstroupe/ 
flclimo.html. 
 
 
regression, and Classification and Regression 
Trees (CART) (e.g., Livingston et al. 1996, 
Mazany et al. 2002, Burrows et al. 2004, Brenner 
2004, Lambert et al. 2005).  These methods 
attempt to quantify the relationship between a set 
of predictors and the outcome of interest such as 
thunderstorm probability or lightning frequency 
(e.g., Neumann and Nicholson 1972; Reap 1994).      

The present study develops a statistical 
scheme that provides improved forecast guidance 
for warm season afternoon and evening lightning 
for eleven areas of the Florida Peninsula that are 
serviced by FP&L.  Logistic regression techniques 
are used to develop equations predicting whether 
at least one CG flash will occur during the noon-
midnight (NM) period in each area, as well as the 
amount of lightning that can be expected, 
conditional on at least one flash occurring.  The 
equations are derived for the warm season (June-
August) when the sea breeze generally is the 
dominant forcing mechanism for convection and 
lightning.  Candidate predictors for the regression 
models include various wind, stability and moisture 
parameters calculated from morning radiosonde 
data at Miami, Cape Canaveral, Jacksonville, and 
Tampa.  Previous day persistence and same day 
morning lightning also are used as candidate 
predictors of afternoon lightning. 

 

2. DATA  
 
a. Study areas 
 

Statistical guidance was developed for eleven 
coastal areas of the Florida peninsula that are 
serviced by FP&L (Figure 2).  These irregularly 
shaped areas were specified by FP&L based 
primarily on the location and number of customers, 
although some meteorological factors also were 
considered.   

 
b. Lightning data 
 

The study utilized CG lightning data from the 
National Lightning Detection Network (NLDN).  
This network, in operation since 1989, detects and 
records CG lightning flashes across the 
contiguous U.S.  The NLDN is owned and 
operated by Vaisala Inc., providing both real-time 
and historical data. A complete description of 
sensors and methods of detection is given in 
Cummins et al. (1998).   

The study period was the warm season 
months of June-August for the years 1989-2004.  
The location accuracy and detection efficiency of 
the NLDN has changed during this time due to 
system upgrades.  Prior to 1994, detection 
efficiencies across the U.S. ranged from 65%-
85%, with location accuracies between 8 km-16 
km.  A system upgrade in 1995 allowed a greater 
number of flashes to be detected, as well as 
improved location accuracy.  Since the upgrade, 
the NLDN has a location accuracy of ~ 0.5 km 
over most of the U.S., and an estimated flash 
detection efficiency of 80-90% (Cummins et al. 
1998).  Detection efficiencies over Florida 
currently range from ~ 80% over most of the 
peninsula to only 60% over the extreme southern 
part of the state.  In this study, no corrections were 
applied to account for these variations in detection 
efficiency or location accuracy.  Thus, actual flash 
counts are underestimated.   

Due to the improved detection efficiency of the 
NLDN, the same flash can be sensed multiple 
times, and non-CG discharges can be detected 
(Cummins et al. 1998).  Following the 
recommendation of Cummins et al. (1998), weak 
positive flashes with signal strengths less than +10 
kA were removed from the dataset.  In addition, 
multiple flashes occurring during the same second 
and within 10 km of each other were assumed to 
be duplicate flashes, and were combined into a 
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FIG. 2.  Map of the eleven forecast areas grouped by 
sounding: 1) Flagler/ St. Johns, 2) Volusia, 3) Brevard, 
4) Martin/ St. Lucie /Indian River, 5) Palm Beach, 6) 
Broward, 7) Miami-Dade, 8) Collier, 9) Lee, 10) 
Charlotte, and 11) Manatee/ Sarasota.  Red shading 
denotes areas where the MFL sounding was used, blue 
shading TPA, green XMR, and yellow shading is JAX. 
 
 
single flash by retaining the first flash’s time and 
location and adding the multiplicities. 

The number of daily CG flashes in each 
forecast area (FA) (Fig. 2) was counted over the 
period of interest, NM local time (LT) (1600-0359 
UTC).  A morning flash count for 0600-1159 LT 
(1000-1559 UTC) also was calculated as a 
potential predictor of afternoon lightning.    

  
c. Radiosonde data 

 
Morning radiosonde data for Miami (MFL), 

Jacksonville (JAX), Tampa (TBW), and Cape 
Canaveral (XMR) were used to calculate various 
wind, moisture, and stability parameters to serve 
as candidate predictors for the regression models.  
Data for years 1989-1999 were obtained from the 
“Radiosonde Data of North America” CD-ROM 
prepared by the Forecast Systems Laboratory 
(FSL) and the National Climatic Data Center 
(NCDC) (FSL and NCDC 1999).  Data for the 
remaining years (2000-2004) were obtained 
directly from FSL’s “Radiosonde Database 
Access” web site (http://raob.fsl.noaa.gov).   

A total of 597 parameters was calculated from 
the radiosonde data (Table 1), many of which 
have been found in previous studies to be useful 

predictors of thunderstorms and lightning during 
the warm season, including wind direction and 
speed, moisture, temperature, and stability.  
Pressure weighted layer averages of these 
variables also were calculated (Table 1). 

The sounding closest to each FA generally 
was used under the assumption that the closest 
sounding is most representative of the conditions 
in that area.  Correlations between the sounding 
parameters and lightning showed that this was 
indeed the case, with only a few exceptions.  
Specifically, parameters calculated from the MFL 
sounding were better correlated with lightning in 
the Charlotte and Lee County areas than 
parameters from the closer TBW sounding.  Since 
the sub-tropical ridge axis usually is located north 
of MFL, the low-level flow in these areas generally 
is from the southeast.  As a result, atmospheric 
properties in the Charlotte and Lee areas tend to 
be more similar to MFL than TBW.  Thus, better 
results would be achieved using the MFL sounding 
for Charlotte and Lee instead of TBW.   

The sounding used for each forecast area is 
indicated in Fig. 2.  Prior to 1995, the JAX site was 
located in Waycross, GA (AYS).  Since the JAX 
soundings are more representative of conditions in 
the Flagler/ St. Johns area than AYS, it was 
decided that only JAX data from 1995 onwards 
would be used for that area.  In addition, due to 
poor availability of XMR soundings prior to 1992, 
only the 1000-1200 UTC data from 1992 onwards 
were used for the Volusia, Martin/ St. Lucie/ Indian 
River, and Brevard FAs.  For all other areas, MFL 
or TBW data for 1989-2004 were used.     

The equations being derived are for situations 
when the sea breeze is the dominant forcing 
mechanism for convection; they are not meant for 
days when large-scale forcing leads to 
thunderstorms.  Therefore, an effort was made to 
remove these synoptically influenced days before 
equation development.  This was done by 
discarding any day whose 1000-700 hPa layer 
average wind speed was greater than 3 standard 
deviations from the climatological mean.  
However, this simple procedure does not 
guarantee that every synoptically disturbed day 
was removed. 

 
d. Statistical software 

 
Two statistical software packages were used.  

Most of the exploratory work was done using S-
PLUS, version 6.1 for Windows, distributed by 
Insightful Corporation.  Final model development 
and testing were performed using the Statistical 
Package for the Social Sciences (SPSS), version  
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Table 1. Radiosonde-derived parameters used as candidate predictors.  Cross-shore and along-shore wind 
components are with respect to an average coastline orientation. 

 
 

Data for each 25 hPa level (38 levels): Stability & Moisture Parameters: 
Temperature (°C) Height of the freezing level (meters) 
Dew point (°C) Height of the wet bulb zero level (meters) 
Relative humidity (percent) K-index (°C) 
Wind speed (knots) Vertical Totals (°C) 
Height (meters) Cross Totals (°C) 
Cross-shore wind component (knots)  Total Totals (°C) 
Along-shore wind component (knots) Severe Weather Threat Index (SWEAT) 
 Convective temperature (°C) 
Pressure-weighted layer averages+      CAPE (J/kg) * 
SIN (layer average wind direction) Modified CAPE (J/kg) ** 
Wind speed (knots)          Temperature at modified EL (°C) 
Cross-shore wind component (knots) Precipitable water (cm) 
Along-shore wind component (knots)   Lifted index (°C) * 
Relative humidity (percent) Modified lifted index (°C) ** 
Layer temperature lapse rate (°C / km)  Showalter Stability index (SSI) (°C) 
Layer thickness (meters)   

 
+ 45 possible layers (e.g., 1000-900, 1000-800,…, 900-800, 900-700,…, etc.) 

* Based on unaltered surface parcel 
** Based on modified parcel heated to the convective temperature 

 
 
 
11.5 for Windows, distributed by SPSS, Inc.  Both 
are powerful, state-of-the-art software packages 
with a wide range of capabilities.   

3. EQUATION DEVELOPMENT 
 
a. Predictands 

 
The first objective of the study was to develop 

statistical guidance to predict whether at least one 
CG flash would occur during the NM period in 
each FA.  Since a forecast of “yes” or “no” was 
sought, a binary indicator was assigned to each 
day in the dataset; “1” if at least one CG flash was 
observed during NM anywhere within each area, 
or “0” if no activity.  This binary indicator served as 
the predictand for the yes/no equations.    

The second objective was to develop 
equations to estimate the amount of lightning that 
would occur during the NM period, conditional on 
at least one flash occurring.  A major decision was 
to determine the form of the predictand, i.e., 
whether to forecast the actual flash count or to 
transform the counts into discrete categories and 
predict a range of counts.  Our initial efforts 
focusing on eastern Miami-Dade and Broward 

Counties in South Florida showed that using MLR 
to estimate a flash count produced comparatively 
poor results.  Instead, results indicated that 
predicting a range of flash counts was the best 
option.  Therefore, the flash counts in each FA 
were grouped into four quartile categories based 
on climatology, with the quartiles used as the 
predictand.  Flash count ranges for each quartile 
are shown in Table 2.  

Rather than developing one model to forecast 
the quartile, the best results were achieved using 
separate equations to distinguish the lowest 
quartile of activity (Q1) from all other days, the 
highest quartile (Q4) from other days, and an 
equation to differentiate the upper two quartiles 
(Q3, Q4) from the lower two (Q1, Q2).  Again, we 
sought a “yes” or “no” forecast for each of these 
outcomes, so three binary indicators were 
assigned to each lightning day (days with one or 
more flashes).  That is, “1” was assigned to Q1 
lightning events and “0” otherwise, “1” for Q4 
events and “0” otherwise, and “1” for events in the 
upper two quartiles (Q3 or Q4) and “0” otherwise.  
These three equations then could be used to 
forecast the most likely quartile (explained in more 
detail in section 4). 
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Table 2. The four quartiles of flash count for each forecast area. 
 

 
Forecast Area: Q1 Q2 Q3 Q4 
Miami-Dade 1 - 11 12 - 52 53 - 166 > 166 
Broward 1 - 7  8 - 43 44 - 137 > 137 
Palm Beach 1 - 11 12 - 67 68 - 235 > 235 
Martin/St. Lucie/Indian River 1 - 18 19 - 113 114 - 378 > 378 
Brevard 1 - 11 12 - 77 78 - 268 > 268 
Volusia 1 - 16 17 - 99 100 - 324 > 324 
Flagler/St. Johns 1 - 18 19 - 115 116 - 404 > 404 
Manatee/Sarasota 1 - 20 21 - 88 89 - 269 > 269 
Charlotte 1 - 8 9 - 31 32 - 103 > 103 
Lee 1 - 12 13 - 46 47 - 137 > 137 
Collier 1 - 13 14 - 44 45 - 124 > 124 

 

 
b. Binary logistic regression 

  
For situations when the outcome is binary or 

dichotomous (i.e., 1 for “yes” or 0 for “no”), the 
most often used technique is “binary logistic 
regression” (BLR) (Hosmer and Lemeshow 1989).  
Let π denote the probability of a success for some 
outcome of interest (e.g., the occurrence of at 
least one CG flash).  BLR relates this probability to 
a linear combination of predictor variables, XK by 
the following relations:  

 
ln [π / (1- π)] = f(XK), and               (1) 
 
f(XK) = b0 + b1X1 + . . . + bKXK.                       (2) 
 

The term on the left side of (1) is the “logit link 
function,” which may be continuous and can range 
from -∞ to +∞ depending on the range of XK 
(Hosmer and Lemeshow 1989).  The probability of 
a success then is given by: 

  
π  =  exp(f(XK)) / [1 + exp(f(XK))],                   (3) 

 
and the probability of a failure (i.e., not observing 
at least one CG flash) is 1-π.   

BLR has less stringent assumptions than 
linear regression.  Unlike MLR, BLR does not 
assume a linear relationship between the 
independent variables and the dependent (binary) 
outcome.  Rather, the logit function in (1) is 
assumed to be linear in its parameters, although 
explicit interaction and power terms can be added 
as additional variables on the right side of (2).  In 
addition, the form of (3) guarantees that BLR will 
always produce probability estimates bounded 

between zero and one inclusive (Hosmer and 
Lemeshow 1989).  
 
c. Principal component analysis 
 

It is clear that several of the parameters in 
Table 1 contain redundant information.  For 
example, precipitable water is closely related to 
the 1000-500 hPa layer average relative humidity, 
and the mean cross-shore wind component in a 
layer is highly correlated with the sine of the mean 
wind direction in that layer.  Wilks (1995) cautions 
that estimates of the coefficients and standard 
errors can become unreliable, and model 
performance can be adversely affected, when 
highly correlated predictors comprise the model.  
Thus, a method was needed to reduce the 
candidate predictors to only the most important 
variables without much loss of information.  This 
was accomplished by performing a principal 
component analysis (PCA) (Wilks 1995) on all 
potential sounding predictors (Table 1) using the 
SPSS software.  PCA is a mathematical procedure 
that transforms a number of correlated variables 
into a smaller number of uncorrelated variables 
called principal components (PCs).  In this study, 
the PCs were used as a classification method to 
cluster the highly correlated predictors into groups 
having physical meaning.  As described in Wilks 
(1995), only components with eigenvalues > 1 
were extracted, and the sounding parameters 
having the greatest weights (or “loadings”) on 
each component were grouped together.   

A total of four to six groups were formed 
through this process.  These groups contained 
parameters that described wind direction, wind 
speed, moisture, or stability, with a final 
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“miscellaneous” group containing variables that 
were not highly correlated with those in any other 
group.  Finally, to determine which predictors to 
retain for the regression analysis, one parameter 
was chosen from each group that was the most 
physically relevant and had the greatest 
correlation with each of the four binary predictands 
(described in section 3a).  This procedure ensures 
that only the most important and non-redundant 
predictors are retained in the dataset for possible 
selection by the BLR procedure. 

The most common wind parameters resulting 
from the PCA for each FA are the sine of the layer 
averaged wind direction, the layer averaged cross-
shore wind component, and the layer averaged 
speed in the low levels.  The K-index (KI) often 
was the most important moisture-related 
parameter, while Total Totals (TT), Showalter 
Stability Index (SSI), and mid-level temperature 
lapse rate were the most important stability 
parameters.  The physical relevance of these 
parameters to lightning occurrence will be 
discussed in section 4a.   
 
d. Additional candidate predictors 

 
Contingency tables using a persistence 

forecast (not shown) indicated that persistence is 
a powerful predictor of lightning during the warm 
season in Florida, and must be included as a 
candidate predictor.  We included a same day 
morning (0600-1159 LT) and previous day NM 
indicator of at least one flash, as well as the 
previous day’s lightning quartile and an indicator 
for the upper two or lower two quartiles.  Also, 
since persistence typically produces a more 
accurate forecast than climatology, persistence 
will be the standard of reference for assessing the 
overall skill of the equations derived in this study. 

Non-linear and interaction effects were 
included in the candidate predictor pool by 
computing standardized 2-way cross products and 
power terms up to the fourth degree (e.g., 
Neumann and Nicholson 1972; Reap 1994).  The 
power terms were calculated only for the PCA-
selected physical variables, while the 2-way cross 
products were calculated between all first order 
parameters including persistence.   
 
e. Model building 

  
Four logistic regression equations were 

derived for each of the eleven FAs, using the PCA 
selected sounding predictors, as well as the non-
linear and interaction terms.  The first gave the 
probability of at least one CG flash occurring 

during the NM period in each area.  Three 
additional logistic equations were derived to 
determine the most likely quartile of lightning, 
conditional on the occurrence at least one flash 
(described in section 3a).  Rather than having one 
equation for each quartile (4 total), this three 
equation approach combined with a decision tree 
(described later) produced the best results.  The 
logistic regression algorithm in SPSS was used to 
derive the equations and screen the variables for 
selection into each model. 

A procedure combining forward stepwise 
screening and cross-validation was used to derive 
each of the four equations.  Variables were 
selected for inclusion in each equation using a 
“forward conditional” stepwise selection algorithm, 
with a test for backward elimination.  The stepwise 
screening and cross-validation procedures are 
described in detail in Shafer and Fuelberg (2005), 
and will not be repeated here.   

The stepwise screening and cross-validation 
procedure was performed to identify the 
combination of predictors that most likely 
generalizes to independent data, and does not 
over-fit the dependent sample.  The “best” 
predictors identified through this process then 
were re-entered for stepwise screening on the 
entire working dataset to obtain the final four 
logistic equations.          

After final equations were obtained for the 
probability of the lowest quartile, upper two 
quartiles, and highest quartile, a decision tree was 
constructed to determine the most likely quartile 
using probability thresholds for the three 
equations.  To produce an unbiased scheme, the 
thresholds were chosen so an equal number of 
cases was partitioned to the left and right at each 
split of the decision tree.  This guarantees that the 
scheme will not have a prediction bias toward any 
one quartile (i.e., a tendency to forecast a 
particular quartile more often than another).  
Further details about the decision tree are given in 
section 4. 
 
4. RESULTS    
 
a. Final logistic equations 

 
The final equations for the eleven FAs 

generally are a variation on the same theme; 
therefore, this section only presents results for the 
Miami-Dade area.  Table 3 displays the final 
equations giving the probability of at least one CG 
flash (Eq. 1) and the conditional probability of the 
lowest quartile (Eq. 2), the upper two quartiles (Eq. 
3), and the greatest quartile (Eq. 4) for the Miami- 



 

 7

 
Table 3. Final logistic regression equations for the Miami-Dade forecast area.  

 
 

Eq. 1: Probability of at least one CG flash 

Predictor B S.E. Wald p-value 
SSI -0.170 0.028 35.761 0.000 
SINDIR* -1.001 0.124 65.064 0.000 
MNSPD** -0.094 0.018 25.969 0.000 

(MNSPD**)2 0.220 0.061 12.978 0.000 
Morning yes/no 1.240 0.183 46.055 0.000 
Previous day yes/no 0.919 0.154 35.814 0.000 
(Prev day yes/no) x (T925) 0.297 0.104 8.191 0.004 
Constant 1.325 0.229 33.575 0.000 

 

Eq. 2: Conditional probability of a Q1 event 

Predictor B S.E. Wald p-value 
SINDIR* 0.659 0.091 52.435 0.000 
KI2 0.174 0.059 8.634 0.003 
Morning yes/no -0.436 0.169 6.632 0.010 
Previous day quartile -0.222 0.061 13.424 0.000 
(Prev. day quartile) x (MNSPD**) 0.175 0.044 15.628 0.000 
(Morning yes/no) x (MNSPD**) -0.391 0.152 6.644 0.010 
Constant -0.603 0.154 15.407 0.000 

 
Eq. 3: Conditional probability of upper two quartile event 

Predictor B S.E. Wald p-value 
KI2 -0.176 0.069 6.515 0.011 
SSI -0.119 0.035 11.186 0.001 
SINDIR* -1.715 0.245 49.014 0.000 
(SINDIR*)3 0.338 0.088 14.688 0.000 
MNSPD** -0.063 0.016 15.532 0.000 
Prev. day Q3 or Q4 yes/no 0.786 0.147 28.413 0.000 
Constant 0.788 0.202 15.192 0.000 

 

Eq. 4: Conditional probability of a Q4 event 

Predictor B S.E. Wald p-value 
KI2 -0.310 0.114 7.335 0.007 
SINDIR* -1.707 0.268 40.645 0.000 
(SINDIR*)3 0.340 0.090 14.208 0.000 
Previous day quartile 0.263 0.067 15.567 0.000 
(Prev. day quartile) x (SSI)  -0.104 0.044 5.575 0.018 
(Prev. day quartile) x (MNSPD**) -0.131 0.034 14.960 0.000 
Constant -1.390 0.204 46.248 0.000 

 

* 1000-800 hPa layer ** 1000-900 hPa layer 
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Dade domain.  The predictors in each equation 
are given along with their coefficient (B) and 
standard error, as well as other statistics that 
indicate the significance of each term and its 
relative predictive importance.  Hosmer and 
Lemeshow (1989) give detailed descriptions of 
these statistics.  The p-values in Table 3 indicate 
that all of the coefficients exceed the 95% 
significance level, providing strong evidence that 
the parameters are significant and belong in the 
equations.  

It is informative to describe the physical 
significance of each parameter in the equations 
(Table 3) and their relationships to lightning 
activity.  The most often selected physical 
predictors are the sine of the vector-averaged 
wind direction in the 1000-800 hPa layer (SINDIR) 
and the average wind speed in the 1000-900 hPa 
layer (MNSPD).  Their selection is not surprising, 
since previous studies have documented that the 
magnitude and direction of the prevailing low-level 
wind with respect to the coastline has a significant 
influence on the strength and inland penetration of 
the sea-breeze, and thus, on the location and 
amount of CG lightning (e.g., López and Holle 
1987; Reap 1994; Lericos et al. 2002).   

In all equations except Eq. 2 the coefficient of 
SINDIR is negative (Table 3).  Since the sine of 
angles between 180˚ and 360˚ is negative, an 
offshore, low-level wind increases the probability 
of afternoon lightning and increases the likelihood 
of a Q3 or Q4 event in the Miami-Dade area.  
Conversely, the positive coefficient in Eq. 2 
indicates that Q1 events are less likely for offshore 
flow (SINDIR < 0) and more likely for onshore flow 
(SINDIR > 0).  The coefficients for MNSPD in Eqs. 
1 and 3 also are negative, suggesting that as the 
low-level wind speed increases, the probability of 
at least one flash and the likelihood of upper two 
quartile events decreases.  This result is 
consistent with Camp et al. (1998) and Arritt 
(1993) who found that onshore wind speeds 
exceeding several m s-1 and offshore speeds 
greater than 11 m s-1 suppress sea breeze 
development in areas near the coastline.  
Conversely, weak offshore flow produces a strong 
sea breeze circulation whose leading edge 
remains near the coastline.  In eastern Miami-
Dade County this offshore scenario can produce 
extensive, slow-moving thunderstorms and high 
flash count events if adequate moisture and 
instability are present.   

It is interesting that a non-linear (cubic) term 
with a positive coefficient was selected for SINDIR 
in Eqs. 3 and 4 (Table 3), in addition to the first 
order term.  This relationship is depicted in Fig. 3a, 

which plots the log-odds of a Q4 lightning event 
versus SINDIR if only the first order and cubic 
terms in Eq. 4 are considered, i.e., setting all other 
variables in the equation equal to zero.  The figure 
indicates that the log-odds of a Q4 event are 
maximized for SINDIR between -0.65 and -0.45, 
with diminishing log-odds as SINDIR increases.  
This maximum corresponds to wind directions 
between 205°-220° (SW) and 320°-335° (NW).  
Northwest flow is uncommon in South Florida 
during June-August.  Therefore, SW flow likely is 
the greatest contributor to the maximum in the log-
odds of Q4 events.  A SW (offshore) flow 
transports sub-tropical moisture northward into 
South Florida and opposes the sea breeze, 
producing enhanced convergence along the sea 
breeze and widespread thunderstorm and 
lightning activity in eastern Miami-Dade County.  

The Showalter Stability Index (SSI) was 
selected in Eqs. 1 and 3.  SSI is similar to the 
Lifted index except the parcel is lifted from 850 
hPa instead of the surface, with values becoming 
more negative as instability increases.  The 
negative coefficients indicate that as instability 
increases the likelihood of at least one flash and a 
Q3 or Q4 event increases.  Studies by Livingston 
et al. (1996) and Lambert et al. (2005) also found 
SSI to be a useful predictor of afternoon lightning.    

The K-index (KI) appears only as a quadratic 
term in the three quartile equations.  Figure 3b 
plots this quadratic relationship between the log-
odds of a Q4 event and KI for the Miami-Dade 
domain, if all other parameters in Eq. 4 are set to 
zero.  Clearly, the likelihood of a Q4 event 
increases with increasing KI until a peak is 
reached between 25-30°C.  Then, the likelihood of 
a Q4 event decreases for larger values of KI.  
Since KI increases with more unstable mid-level 
lapse rates and greater middle-tropospheric 
moisture, it is reasonable that convection and 
lightning also will increase.  The reason for 
decreasing log-odds for KI values greater than       
~ 30 °C is uncertain, but may be due to excess 
mid-level moisture and cloud cover from early 
morning convection (i.e., at or near the sounding 
time), which would tend to suppress surface 
heating and strong afternoon activity.   

As expected, persistence was selected as a 
predictor of afternoon lightning in the Miami-Dade 
area (Table 3).  For the probability of at least one 
flash (Eq. 1), both the morning and previous day 
indicators were chosen.  The positive coefficients 
suggest that the likelihood of at least one flash 
during the NM period increases if at least one 
flash occurred the previous day, or if at least one 
flash occurred from 0600-1159 LT in the morning.    
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(a) 

Log-odds of a Q4 Lightning Event vs. SINDIR
Miami-Dade Forecast Area
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(b) 

 

Log-odds of a Q4 Lightning Event vs. K-Index
Miami-Dade Forecast Area
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FIG. 3. Log-odds of a Q4 lightning event as a non-linear function of a) the sine of the 1000-800 hPa layer average 
wind direction and b) K-index, for the Miami-Dade forecast area. 
 
 

 

ln [π / (1- π)] = -1.390 – 1.707(SINDIR) + 0.340(SINDIR*)3

* power terms are products of z-scores 

ln [π / (1- π)] = -1.390 – 0.310(KI*)2

* power terms are products of z-scores 
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The morning persistence indicator also appears in 
Eq. 2 for the probability of a Q1 event.  The 
negative coefficient implies that Q1 events 
become less likely, and thus Q2 or greater events 
become more likely, if there was at least one flash 
during the morning.  The previous day quartile 
indicator was selected in Eqs. 2 and 4, and the 
persistence indicator for the upper two or lower 
two quartiles was chosen for Eq. 3.  The signs of 
their respective coefficients indicate that higher 
flash count events are more likely if the previous 
day also had a high flash count.  Meteorological 
conditions in South Florida during the warm 
season often change little from day to day.  Thus, 
if conditions were favorable for lightning on the 
previous day, conditions on the current day often 
are similar.  Lightning activity during the morning 
suggests that outflow boundaries may be present 
during the afternoon.  These boundaries can 
enhance low level convergence by interacting with 
the sea breeze circulation.  

Interaction terms were selected in three of the 
four guidance equations for the Miami-Dade area 
(Table 3).  Such terms appear when the effect that 
one independent variable has on the response 
(i.e., lightning) is modulated by changes in another 
independent variable.  For example, in Eq. 4 the 
effect of persistence (previous day quartile) on the 
likelihood of Q4 events is modulated by MNSPD 
and SSI.  The negative coefficients suggest that 
decreasing values of MNSPD and SSI reinforce 
the positive relationship between persistence and 
the likelihood of Q4 events.  Conversely, an 
increase in MNSPD or SSI counteracts the 
positive effect of persistence.  Thus, these 
interaction terms serve to prevent persistence 
from having undue influence on the forecast if 
current atmospheric conditions are unfavorable for 
a Q4 event, or enhance its contribution to the 
forecast if conditions are favorable.  
 
b. Results for dependent data 
 
1) Yes/No equations 

 
The BLR equations provide a probability 

ranging between zero and one.  To forecast 
whether at least one CG flash will occur during the 
NM period, a threshold probability must be 
determined.  Then, if the calculated probability 
exceeds this threshold, at least one flash is 
forecast to occur; otherwise, no lightning is 
forecast.  The optimum threshold was determined 
using verification scores from a 2 x 2 contingency 
table giving the number of days when at least one 
flash was observed compared to the number 

predicted using varying trial thresholds.  These 
scores include the probability of detection (POD), 
hit rate (HR), false-alarm ratio (FAR), bias, critical 
success index (CSI), and the percentage of non-
lightning events correctly forecast (defined in Reap 
1994 and Mazany et al. 2002).  Table 4 shows a 
sample contingency table with formulas used in 
computing these scores.   
 
Table 4. Sample 2 x 2 contingency table and formulas 
for computing skill scores.  
========================================== 
 

 Predicted  

Observed Yes No Total 

Yes x y x + y 

No z w z + w 

Total x + z y + w w + x + y + z 

 
Probability of detection:   POD = x / (x + y) 

Overall hit rate:         HR = (x + w) / (w + x + y + z) 

False alarm ratio:         FAR = z / (x + z) 

Bias:             B = (x + z) / (x + y) 

Critical success index:     CSI = x / (x + y + z) 

Hit rate non-events:         w / (z + w) 

====================================== 
 
Figure 4 shows how these statistics vary using 

different thresholds for eastern Miami-Dade 
County.  Except for CSI, HR, and the percentage 
of non-events correctly forecast, values decrease 
as the threshold is increased.  Based on Reap 
(1994), we sought to maximize the CSI and POD 
while minimizing the FAR and capturing as many 
of the non-events as possible.  This latter 
consideration was used because results showed 
that the BLR scheme better forecast days with 
observed lightning than days without lightning.  
We found that the hit rate was improved by 
sacrificing some accuracy forecasting days with 
lightning in order to improve the forecasts of days 
without lightning.  Based on the above 
considerations, a threshold of 50% was chosen for 
the Miami-Dade model.  Thresholds for the other 
ten forecast areas ranged from 45% to 60%.        

Table 5 shows a 2 x 2 contingency table and 
statistics for all 16 warm seasons of dependent 
data for eastern Miami-Dade County, using the 
optimum probability threshold of 50%.  The scores 
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Statistics for Yes/No Equation: Miami-Dade Area
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FIG. 4. Values of CSI, POD, FAR, hit rate, bias, and the percentage of non-events correctly forecast for varying 
probability thresholds for the Miami-Dade forecast area.  The optimum probability threshold is marked with an arrow.  

================================================================================
 
are quite good, with a CSI of 77%, POD of 92%, a 
bias near 1, and a low FAR of 17%.  Also shown is 
a skill score (SSmod) calculated from the model CSI 
and the persistence CSI: 
 
SSmod = [(CSImod–CSIpers) / (1–CSIpers)]*100%     (4)                        
 
The skill score is positive (25.4%), indicating that 
forecasts made by the model are superior to 
persistence.  The skill scores for the remaining ten 
FAs (not shown) also are positive, ranging from 
15.6% in the Charlotte FA to 31.9% in the Volusia 
area.  Thus, all model forecasts based on the 
dependent data are superior to persistence.  The 
variations in skill score can be attributed to factors 
such as differences in the skill of persistence, size 
of the FA, and the proximity of the radiosonde site 
being used.  
 
2) Quartile scheme   
      

 Once probabilities are obtained from the three 
quartile equations (e.g., Eqs. 2-4 in Table 3), one 
must determine which quartile to forecast.  Since 
the equations do not contain the same 
parameters, one cannot simply solve for the 
probability of each quartile using output from the 
three equations.  Instead, best results were  

 
achieved by creating a decision tree using the 
probability thresholds described in section 3e 
(e.g., Burrows et al. 2004).   

The decision tree for the Miami-Dade FA and 
its resulting 4 x 4 contingency table are shown in 
Figure 5 and Table 6, respectively.  The first 
branch in the tree depends on the probability from 
Eq. 3, i.e., distinguishing between upper two and 
lower two quartile events.  For example, if the 
probability of an upper two quartile event (≥ 53 
flashes) exceeds the threshold of 0.498, the right 
branch is taken and either a Q3 or Q4 event is 
forecast.  Then, Eq. 4 is used to determine which 
of these two quartiles is most likely.  If the 
probability of a Q4 event (> 166 flashes) exceeds 
0.372 then a Q4 event is forecast, otherwise that 
day is predicted to be a Q3 event.  Conversely, if 
the probability of the upper two quartiles is less 
than the threshold of 0.498, the left branch is 
taken and the lower two quartiles are most likely, 
in which case Eq. 2 determines which to predict, 
using a threshold of 0.358.     

The overall accuracy of the quartile scheme 
for the Miami-Dade area can be assessed from 
the 4 x 4 contingency table for all 16 warm 
seasons of dependent data (Table 6).  It is 
encouraging that the number of observed days in 
each quartile versus the number predicted is  
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Table 5. 2 x 2 contingency table for the number of days 
when at least one CG flash was observed and the 
number predicted for all 16 warm seasons of dependent 
data for the Miami-Dade area.  Also shown are the CSI 
and skill scores for all eleven forecast areas, sorted by 
skill score. 
========================================== 
 

 Predicted  

Observed Yes No Total 

Yes 915 82 997 

No 190 183 373 

Total 1105 265 1370 

 
Probability of detection:   0.92 

Overall hit rate:         0.80 

False alarm ratio:         0.17 

Bias:             1.10 

Critical success index:     0.77 

Hit rate non-events:         0.49 

SSmod:       25.4% 

====================================== 
 
maximized along the diagonal.  The scheme best 
forecasts Q1 and Q4 events, with hit rates of 47% 
and 48%, respectively.  The table also reveals that 
Q2 events are not easily distinguished from Q1 
events, and Q3 days are not easily distinguished 
from Q4 days.  Thus, hit rates for the Q2 and Q3 
quartiles are somewhat worse (31%-33%).  This 
may be due to many days having probabilities that 
are very near the thresholds for being partitioned 
left or right at a branch of the decision tree.  In 
addition, flash counts on many days straddle the 
cut point between quartiles.  The probability 
thresholds could be adjusted to increase the 
detection for any quartile of choice (e.g., the Q4s), 
but not without creating a bias toward that quartile.   

Another measure of accuracy is the 
percentage of time that the scheme correctly 
predicts to within one quartile of the observed 
(Table 6).  For example, when a Q1 event was 
observed, the scheme predicted either a Q1 or a 
Q2 event 78% of the time, and when a Q4 event 
was observed, the scheme predicted either a Q3 
or a Q4 79% of the time.  Considering all quartiles 
together, the Miami-Dade scheme correctly 
forecasts the quartile 40% of the time using the 

dependent data, and is correct to within one 
quartile of the observed 82% of the time.    

The bottom of Table 6 shows the percentage 
of correctly classified events and the percentage 
correct to within one quartile using persistence, as 
well as the skill score computed from (4).  Both 
SSmod scores are positive, indicating that the 
quartile scheme is more skillful than persistence in 
correctly forecasting the quartile, and much more 
skillful than persistence at predicting to within one 
quartile of the observed.  The same is true for the 
remaining ten FAs (not shown).  In forecasting the 
correct quartile, all SSmod scores are positive, 
ranging from 6.4% in the Charlotte area to 20% in 
Flagler/ St. Johns.  However, scores for the 
percentage correct to within one quartile are much 
greater, ranging from 19.1% in the Lee FA to 
33.8% in the Brevard area.   
 
c. Cross-validation 

  
The results presented in section 4b (and those 

in Tables 5 and 6) are for all 16 warm seasons of 
dependent data.  That is, the results show the 
predictive accuracy of the equations when applied 
to the same data that were used to derive them.  
These results do not assess how well the 
guidance equations will predict cases that were 
not involved in equation development.  To 
estimate the performance of the equations on 
independent data, a k-fold cross-validation (CV) 
procedure was followed.  This involved withholding 
one warm season of data at a time for testing, 
while using the remaining 15 warm seasons to re-
derive the equations (following the same 
procedure mentioned in section 3e).  The process 
was repeated 16 times, once for each warm 
season.  Since the CV procedure is both tedious 
and time-consuming, it was performed only for the 
Flagler/St. Johns (FSJ) and Charlotte FAs.  Since 
the FSJ models achieved one of the best skill 
scores of the eleven areas, while Charlotte was 
one of the least skillful, it is reasonable to assume 
that the CV skill scores for the remaining nine 
areas will lie somewhere in between.              

For the yes/no equations, the CV results 
(Tables 7) for both areas produce only a slight 
reduction in SSmod of between 0.6%-1.2% 
compared to the dependent data.  These scores 
range from 31.0% in the FSJ area to 14.4% in the 
Charlotte area.  The quartile equations (Table 8) 
exhibit a somewhat larger reduction in SSmod 
compared to the dependent data.  For the hit rate, 
skill scores range from 16.5% in FSJ to only 1.4% 
in the Charlotte area, a reduction of between 
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Quartile Decision Tree: Miami-Dade Forecast Area 
 

Upper two quartiles model 
        
 

       
 
 
 

                              Q1 model                              Q4 model 
    
 
 
 
 
 
 

 
           Q1               Q2                     Q3               Q4 

 
FIG. 5.  Probability decision tree used to determine the predicted lightning quartile for the Miami-Dade domain.    

 
 
 
 
Table 6. 4 x 4 contingency table for the number of observed days in each quartile and the number predicted using the 
decision tree in Fig. 5.  These results are for all 16 warm seasons of dependent data for the Miami-Dade area. 
 
========================================================================================= 
 

4 x 4 Contingency Table & Stats for Miami-Dade Area 

  Predicted      
Observed Q1 Q2 Q3 Q4 Total Hit rate Within 1Q 

Q1 117 77 34 22 250 0.47 0.78 
Q2 74 82 61 33 250 0.33 0.87 
Q3 39 57 77 73 246 0.31 0.84 
Q4 20 33 77 121 251 0.48 0.79 

Total 250 249 249 249 997 0.40 0.82 
 

                          Persistence:     0.36            0.75 

                          SSmod:              6.4%          28.7%  
========================================================================================= 
 
 
 
 
 
 
 

 
 
 
 
 

Prob (≥ 53 flashes) 

< 0.498 ≥ 0.498 

Prob (< 12 flashes) Prob (> 166 flashes) 

≥ 0.358 < 0.358 < 0.372 ≥ 0.372 
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Table 7. 2 x 2 contingency tables for the number of days 
when at least one CG flash was observed and the 
number predicted during cross-validation for the 
Flagler/St. Johns (top) and Charlotte forecast areas 
(bottom). 
========================================== 
 

 Predicted  

Observed Yes No Total 

Yes 546 47 593 

No 119 146 265 

Total 665 193 858 

 
SSmod:      31.0% 
Dependent data: 31.6% 
Difference:  -0.6% 

 
 Predicted  

Observed Yes No Total 

Yes 780 82 862 

No 235 165 400 

Total 1015 247 1262 

 
SSmod:      14.4% 
Dependent data: 15.6% 
Difference:  -1.2%  

 
====================================== 
 
3.5%-5.0%.  For the percentage correct to within 
one quartile of the observed, skill scores range 
from 26.4% in the FSJ area to 21.7% in Charlotte, 
a reduction ranging between 4.6%-5.9%.  These 
results are surprisingly good for independent data 
and are likely a consequence of the random 
sampling and testing methodology that was used 
to derive the original equations (section 3e).  The 
CV results suggest that the guidance equations 
are statistically robust, and can be expected to 
provide useful guidance when implemented 
operationally by FP&L.   
 
5. SUMMARY & CONCLUSIONS 
 

This study has utilized 16 warm seasons of 
NLDN data (1989-2004) together with morning 
radiosonde releases from Miami, Cape Canaveral, 
Jacksonville, and Tampa to develop statistical 
lightning guidance equations for eleven areas of 
the Florida peninsula serviced by FP&L.  A total of 

597 sounding parameters that previous studies 
have found to be useful indicators of 
thunderstorms and lightning during the warm 
season in Florida were considered as candidate 
predictors.  These parameters describe wind 
direction and speed in various layers, as well as 
moisture, temperature, and stability.  Persistence 
and same day morning lightning also were used 
as candidate predictors.  A combination of 
stepwise screening and cross-validation was used 
to derive logistic regression equations to predict 
whether at least one CG flash would occur during 
the NM period, as well as the amount of lightning 
that could be expected, conditional on at least one 
flash occurring.  Flash counts were sub-divided 
into four quartile categories based on climatology, 
and a decision tree scheme was used to 
determine the most likely quartile.   

Results for the Miami-Dade domain were 
presented in detail.  The speed and direction of 
the prevailing low-level wind was found to be the 
dominant factor in each of the guidance equations.   
This wind has a significant influence on the 
strength and inland extent of the afternoon sea 
breeze circulation.  Other important predictors 
were K index and Showalter Stability Index, as 
well as morning and previous day persistence.  
Non-linear and interaction effects also were found 
to be important.  An important result is that 
forecasts for all eleven FAs were superior to those 
from persistence for both the dependent data and 
during cross-validation.  The greatest skill scores 
were achieved predicting whether at least one 
flash will occur and predicting to within one 
quartile category of the observed amount.     

The guidance equations derived in this study 
utilized parameters calculated from an appropriate 
morning sounding.  This approach was based on 
several assumptions that are not valid on all days.  
For example, we assumed that atmospheric 
conditions do not vary significantly from the 
sounding time (8 AM LT) through the end of the 
forecast period (midnight).  This assumption is 
approximately valid most of the time over Florida 
during the warm season, but sometimes is violated 
if a different air mass is advected into the area.  
We also assumed that atmospheric conditions at 
the radiosonde site are representative of those in 
the entire FA, which may not be true, even during 
the warm season.  Whenever these assumptions 
are not met, errors in the lightning forecast will 
result.  It also is clear that factors not considered 
in this study have an important influence on the 
likelihood and amount of lightning in each area.  
These include outflow boundaries from pre-
existing storms, and the interaction of smaller 
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scale circulations such as lake/river breezes with 
the sea breeze (e.g., Laird et al. 1995, Rao and 
Fuelberg 2000).  These processes often aid in 
forming new convection in areas that otherwise 
would not be favored because of the speed and 
direction of the prevailing low-level flow.  Cloud 
microphysical processes also were not considered 
in this study.  

Despite these limitations, the current results 
show how remarkably well one can predict 
afternoon lightning over Florida for areas as small 
as half a county using input from just a morning 
sounding.  Future work will seek to improve the 
current results by utilizing mesoscale model output 
to create spatial forecast fields of lightning 
probability and amount for the entire FP&L service 
territory (to include the entire state of Florida). The 

model forecast data will be more location and time 
specific than a static morning sounding at one 
location.  The incorporation of model-derived cloud 
microphysics hopefully can be related to charging 
mechanisms and lightning occurrence.  The 
forecasts resulting from these improvements are 
expected to be more accurate than those 
described here.  
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Table 8. 4 x 4 contingency tables for the number of observed days in each quartile and the number predicted during 
cross-validation for the Flagler/St. Johns (top) and Charlotte forecast areas (bottom). 
========================================================================================= 
 

Cross-validation results for Flagler/St. Johns area: Quartile scheme 
 

  Predicted      
Observed Q1 Q2 Q3 Q4 Total Hit rate Within 1Q 

Q1 82 24 22 22 150 0.55 0.71 
Q2 42 47 36 21 146 0.32 0.86 
Q3 27 39 57 26 149 0.38 0.82 
Q4 12 22 39 75 148 0.51 0.77 

Total 163 132 154 144 593 0.44 0.79 
 

                         SSmod:                    16.5%        26.4% 
                     Dependent data:    20.0%        32.3% 
             Difference:             -3.5%         -5.9% 
 
 

Cross-validation results for Charlotte area: Quartile scheme 
 

  Predicted      
Observed Q1 Q2 Q3 Q4 Total Hit rate Within 1Q 

Q1 79 68 43 32 222 0.36 0.66 
Q2 71 58 49 31 209 0.28 0.85 
Q3 44 65 50 56 215 0.23 0.80 
Q4 21 49 59 87 216 0.40 0.68 

Total 215 240 201 206 862 0.32 0.74 
 

                         SSmod:                    1.4%         21.7% 
                     Dependent data:    6.4%         26.4%     
             Difference:           -5.0%          -4.6% 
 
========================================================================================= 
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