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1.   INTRODUCTION 
 
 GOES satellite-derived atmospheric motion vectors 
(AMVs) have recently been shown to capture detailed 
mesoscale flow structure in the vicinity of convective 
storms, which can be used to compute convective 
cloud-top growth rates (Bedka and Mecikalski 2005, 
BM05 hereafter).  Using the UW-CIMSS satellite AMV 
algorithm (Velden et al. 1997, 1998) to help diagnose a 
severe thunderstorm event over the U.S. Southern 
Plains, BM05 show that a modified mesoscale AMV 
processing methodology increases the number of 
vectors by a factor of 20 over typical operational 
methods.  An example of AMVs from this event is 
shown in Figure 1.  Although these mesoscale AMVs 
are effective in identifying cumulus cloud motions, little 
published information is available on the quality of these 
mesoscale motion vectors.  
 The focus of this presentation is to evaluate 
specially-processed GOES-12 mesoscale AMVs using 
two established ground-based in situ observing 
systems: the NOAA Wind Profiler network and 
rawinsondes (i.e. “sondes”). Wind observations are 
matched in time/space with mesoscale AMVs over the 
U.S. Department of Energy (DOE) Atmospheric 
Radiation Measurement (ARM) program Southern Great 
Plains (SGP) Central Facility at Lamont, OK. Root-
mean-square (RMS) difference and bias statistics are 
computed.  Routine operational GOES-12 AMVs from 
NOAA/NESDIS are also incorporated into this analysis 
to compare and contrast the RMS and bias statistics 
between operational and mesoscale AMVs. 
 Establishing the observation “error” characteristics 
of mesoscale AMVs  can lead to an improved utilization 
of these vectors in any application where detailed 
knowledge of atmospheric flow is required at high 
temporal resolution.  For example, these AMVs are 
currently being produced at CIMSS and used as input to 
an experimental convective storm initiation nowcast 
algorithm (Mecikalski and Bedka 2005). The AMVs can 
also be interpolated to aviation flight levels for shear-
induced turbulence identification and for more efficient 
aircraft route planning to avoid (benefit) from regions 
with strong head-winds (tail-winds).  In addition, 
assimilation of these high-density AMVs into mesoscale 
NWP models is another potential application. 
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2.   METHODOLOGY AND DATASETS 
 
2.1.  Mesoscale AMV Processing Methods 
 
 The methodology for deriving mesoscale AMVs is 
explained in detail in BM05, but is summarized below.  
A 3-image sequence of 15-min temporal resolution 
GOES-12 1-km visible (VIS), 4-km 10.7-μm “infrared 
window” (IR), and 4-km 6.5-μm water vapor (WV) band 
data is used as input to the UW-CIMSS AMV processing 
algorithm.  Targets are identified in boxes of adjustable 
size within the middle image of this sequence and are 
tracked both forward and backward in time using cross-
correlation based feature matching.  Suitable targets 
represent well-defined cloud features (VIS, IR), coherent 
cloud edges (VIS, IR), or brightness temperature (TB) 
gradients in the WV channel. Two “sub-vectors” are 
computed and are then averaged to arrive at a final 
vector motion for a given target.   
 The next step is to obtain an estimate of the height  
for each AMV. This is accomplished by a hierarchical 
scheme (Velden et al. 1998) that selects one of several 
available IR-based techniques: the “IR window” 
technique (Schreiner et al. 1993); the CO2-slicing 
algorithm (Menzel et al. 1983); or the H2O-intercept 
method (Szejwach 1982; Nieman et al. 1997).   
 The AMVs are then post-processed using objective 
quality control (QC) routines. These routines check the 
temporal and spatial coherence of the AMVs [the 
“quality indicator” (QI) technique, Holmlund 1998] and 
the fit of each individual vector to an objective analysis 
of the wind field [“recursive filter” (RF) analysis, Hayden 
and Purser 1995].  While an NWP model guess is used 
as a background for the objective analysis, the required 
fit of the final AMV field to the model first guess is 
reduced in mesoscale AMV processing because the 
model often cannot accurately resolve and represent the 
complex flow associated with (and induced by) 
convective clouds on the meso-γ (sub-grid) and meso-β 
scales due to grid resolution limitations. 
 Additional differences between operational and 
mesoscale AMV processing are described below. The 
principle goals of these adjustments are to increase the 
number of targets for subsequent tracking, and to relax 
the quality control constraints primarily developed to 
satisfy a coherent AMV field for larger-scale flow 
regimes.  Both of these processing strategy 
modifications serve to increase the density and detail of 
the resulting AMV field to better depict mesoscale flow 
regimes. 
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 The size of the AMV targeting box is reduced from 
the default size of 15 x 15 to 5 x 5 pixels (~1-km 
(VIS) and ~4-km (IR) resolution per pixel).  

 
 VIS targets are tracked through the entire depth of 

the troposphere and lower stratosphere (1000-100 
hPa); this differs from operational processing, 
where targets are only identified in the lower- to 
mid-troposphere (1000-600 hPa).  

 
 The maximum IR target TB is increased from 250 to 

285 K in order to allow tracking of lower-
tropospheric cumulus clouds in warm boundary 
layers.  

 
 The impact of the internal quality control  on the 

resulting AMV field is greatly down-weighted 
through a reduction of the minimum required QI (50 
vs. 60 (operational)) and RF (.01 vs. .50 
(operational)) analysis score thresholds.  
 

 Gross error checks that penalize directional and 
speed variations from the background guess field 
(typically 90° and 10 ms-1) are turned off to further 
minimize the impact of the first-guess on the final 
mesoscale AMV field. 

 

 
Figure 1: GOES-12 mesoscale AMVs superimposed on 
VIS imagery within and near developing convection over 
Eastern KS at 2000 UTC on 4 May 2003. Green barbs 
represent AMVs within the 1000-700 hPa layer; blue 
barbs within the 700-400 hPa layer, purple barbs within 
the 400-100 hPa layer. Green barbs outlined by boxes 
illustrate convergent flow at levels below 900 hPa.   
Large blue arrows illustrate mid-level diffluent flow. 

 It is important to note here that, like any other 
observing system, satellite-derived AMVs are inherently 
unable to perfectly depict the “true” flow at any given 
point in the troposphere, even if the AMV target 
characteristics (horizontal dimension, cloud-top 
opacity/emissivity) and their behavior in time are 
optimal.  The underlying assumptions of satellite-derived 
motion estimation are that features move within an 
short-term image sequence at a constant height level, 
with speeds equal to the true atmospheric flow.  The 
first assumption can be violated in convective cloud 
situations, especially if the image sequence separation 
time is large compared to the vertical motions. The latter 
assumption is difficult to prove with the current 
generation observing systems as no “perfect” wind 
measurement device exists.  Finally, vertical momentum 
transports occurring in “clear-air” (i.e. cloud-free 
regions) induced by cumulus cloud dynamics and 
phenomena such as boundary layer eddies and gravity 
wave circulations cannot be directly measured from 
satellites.  These transports can  alter the actual  flow as 
measured by in situ rawinsondes or  Wind Profilers. 
 The following bullets provide a brief summary of the 
target characteristics, time evolution behavior, and NWP 
first guess characteristics that would lead to an optimal 
AMV flow estimate using geostationary imagery.  An 
appreciable portion of the AMV versus sonde and 
Profiler differences in this study are likely related to 
deviations from these guidelines, with errors associated 
with height assignment being the largest contributor.   It 
should also be stated that rawinsonde/Profiler 
measurement errors and matching collocation induced 
errors also contribute to the differences shown in 
Section 3.  
 
Optimal AMV Target Characteristics: 
 
 Steady-state cloud features neither growing nor 

decaying in the vertical, with sharp, coherent 
edges. 

 
 Cloud and WV targets represent a single/shallow 

tropospheric level/layer.  
 
 A VIS or IR target should fill an entire 4 km IR pixel, 

with an opaque cloud-top and an emissivity near 1, 
for the best application of the IR-based height 
assignment techniques. 

 
 WV tracking targets representing a shallow layer of 

concentrated WV within the middle to upper 
troposphere (Rao et al. 2002), and exhibiting sharp 
horizontal gradients. 

 
 Distinct appearance of target relative to the Earth 

surface (i.e. target much colder than surface, no 
surface snow or ice cover). 

 
 Targets within ~60º of the satellite nadir point. 

Degredation can be expected outside of this radius 
towards  the limbs of the satellite view.    

 



Optimal AMV Target Tracking and Evolution Behavior 
 
 Tracking image separation: 5 mins for VIS/IR and 

30 mins for WV. 
 
 Coherency in the shape and motion of the target 

over the tracking interval (i.e. non-accelerating, 
subvector 1 speed equal to subvector 2 speed). 

 
 Image-to-image geo-referenced co-registration 

accurate to within ~1 pixel. 
 
Optimal NWP Background Guess Characteristics 
 
 For the applications discussed in this study, 

mesoscale NWP model analyses with high spatial 
and vertical resolution to obtain accurate  
temperature profiles for use in AMV height 
assignments. 

 
2.2.   NOAA Wind Profiler and Rawinsonde Data 
 
 Six-minute resolution data from the NOAA Wind 
Profiler site at Lamont, OK is utilized within this study.  
As the satellite AMV heights are assigned in pressure 
space, the sampling levels of the Profiler are converted 
from altitude (in meters) to pressure (in millibars) using 
the initial pressure/height analysis profile from the 
operational Rapid Update Cycle 20-km resolution model 
run (RUC-20, Benjamin et al. 2002).  As a 3-image 
sequence of GOES-12 data is used to compute AMVs 
over a 30-min time window, six 6-minute wind profiles 
are averaged together (centered in time on the middle 
GOES image) to obtain a set of wind observations that 
is reasonable and “fair” to compare with GOES AMVs.  
Only high-quality Profiler data, which pass all QC 
checks, are used here. 
 Rawinsondes launched from the DOE ARM SGP 
Central Facility at Lamont, OK are also employed for 
AMV evaluation purposes in this study.  Specifically, 
Vaisala RS-92 GPS-tracked, quality controlled, wind 
measurements are co-located with and compared to the 
GOES AMVs and Wind Profiler data.  There are four 
sonde launches per day at the Lamont site, occurring at 
approximately 0530, 1130, 1730, and 2330 UTC. In 
addition, supplemental sonde launches are also 
included, which vary in launch time to coincide with 
polar orbiting satellite (AQUA) overpasses.  In total, data 
from 742 rawinsondes are used for comparison. 
 
2.3.   Dataset Collocation Methodology 
 
 The period of 04/11/05 to 10/01/05 has been 
evaluated to date.  Plans are to expand this study to a 
period of one year, such that a statistically significant 
sample size of collocated data, representing a 
comprehensive set of mesoscale atmospheric 
conditions, is accumulated.   
 Two types of comparisons will be shown in Section 
3.  One will include spatially and temporally collocated 
Wind Profiler and sonde information at each Profiler 
sampling level.  This comparison is done to demonstrate 

the relative accuracy and consistency of the 6-min Wind 
Profiler observations.  As each sonde reports data from 
thousands of vertical levels, a large number of 
collocations exist, which allows for a robust analysis of 
the difference characteristics between these two 
instruments.  Once these characteristics have been 
established, a second comparison is performed which 
includes GOES-12 operational and mesoscale AMVs, 
Profiler, and sonde data.   
 The time and location of the rawinsonde 
observations at each sonde level is compared to the 
time stamp of a Wind Profiler observation.  Profiler 
observations within +/- 3-mins of the sonde observation 
and 2-hPa in the vertical are considered matches.  As 
the sonde ascends with time, a Profiler observation 
temporally closest to the sonde observation is selected 
for comparison.  Thus for a 1-hour sonde flight, as many 
as 11 different Wind Profiler profiles are directly 
compared to the sonde data.  A 25-km spatial match 
criteria is imposed such that the Wind Profiler and 
sonde are both sampling a homogeneous atmospheric 
state.  It is important to note that this criterion essentially 
imposes a bias within this comparison toward lower 
wind speeds, as a high wind situation would likely 
advect the balloon outside of the 25-km-radius vertical 
column surrounding the Wind Profiler.  Future work will 
examine the impact of expanding this radial distance 
match threshold. 
  The second comparison focuses on the quality of 
the GOES-12 AMV estimates.  AMVs within 25 km of 
the Lamont, OK Wind Profiler site are collected each 
time the UW-CIMSS algorithm is executed (every 15-
mins during both the day and night).  A 25-km radial 
distance threshold is also applied to the sonde data, 
similar to the comparison described above.  Profiler and 
sonde data are matched if they are within 2 hPa of one 
another.  An AMV is then matched to these datasets if 
its height is within 10 hPa of the Profiler/sonde height. 
This creates a homogenous sample of simultaneous 
AMVs, sondes and Profiler observations.  
 
3.   RESULTS 
 
3.1.  Rawinsonde to Wind Profiler Comparison 
 
 Figure 2 shows thecomparison between  Wind 
Profiler and rawinsonde winds for the time period 
described above.  There were 224790 matches for this 
comparison, yielding a directional RMS difference of 
25.5°. The wind speed observations are essentially 
unbiased and have a speed RMS difference value of 2.2 
ms-1.   
 Figure 3 shows the height distribution of the sonde-
Profiler matches.  The vast majority of the matches are 
located in the upper troposphere, above the 500 hPa 
level.  50 of the 72 Wind Profiler sampling levels are 
above 500 hPa, which leads to the increased number of 
matches aloft.  While a large number of matches were 
accumulated during the selected time period, and it 
appears that good agreement exists between these two 
datasets throughout the entire depth of the troposphere, 
it must be remembered that the sample is biased to  



 
 
 
 
lower wind speed regimes in the upper-troposphere due 
to the 25 km match radius constraint. It is likely that 
higher variability would exist in a ‘climatologically- 
representative’ sample.  The poster presentation will 
explore this topic further, showing the difference 
characteristics for matches when the Wind Profiler is 
functioning in either “low” or “high” modes and when the 
observed winds are separated into speed intervals. 
 
3.2.  Mesoscale GOES-12 AMV Comparisons 
 
 A comparison between mesoscale GOES-12 
AMVs, NOAA Wind Profiler, and rawinsonde wind 
observations is shown in Figure 4.  For the 1847 
matches shown here, the RMS difference statistics for 
both the AMV-Wind Profiler and AMV-rawinsonde 
comparisons are ~40° (~5.1 ms-1) for wind direction 
(speed).  Wind speed bias statistics reveal that the 
mesoscale AMVs are <1 ms-1 faster than the sonde and 
Profiler observations (see Table 1 at the end of the 
document). This finding is the reverse of usual AMV 
biases, as they have generally been found to be slower 
overall in comparison to sonde data in previous internal 
studies. We speculate that this “slow bias” in previous 
studies is caused by the inclusion of high wind regimes, 
which we are not sampling here due to the match radius 
and balloon drift limitation.  Figure 5 shows that the 
matches are well distributed throughout the 
troposphere, with maximu matches in the lower 
troposphere (900-750 hPa) being mainly associated 
with VIS AMVs. 
 Table 1 provides a statistical comparison of 
mesoscale AMVs to sonde/Profiler, separated by AMV 
type and height.  The parameter “Vector RMS” is 
defined as: 
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Figure 2: Collocated sonde and NOAA Wind Profiler wind direction (left) and wind speed (right) from 11 April to 
1 October 2005 at Lamont, OK. RMS and bias statistics (degs and m/sec) are shown in the lower right. 
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where u_diff and v_diff are the u- and v- wind 
component differences, vect_diff is the combined vector 
magnitude of u_diff and v_diff, and N is the total number 
of vectors in a given sample. “Vector Bias” is the mean 
vect_diff between the AMV and Profiler/sonde data. 
 Table 1 shows that AMVs within the lowest layer 
(1000-851 hPa) exhibit the highest directional RMS 
differences, as well as a reversal in speed bias 
compared to other layers.  Vector biases are 
substantially higher for this layer than for the other three 
layers examined here, which is strongly influenced by 
the higher directional RMS differences.  Higher 
directional RMS differences indicates that both the u- 
and v- wind components are significantly different, thus 
producing a higher mean vector difference (i.e. bias). 
 These results may be related to a couple issues.  A 
high percentage of mesoscale AMVs from this layer are 
derived from VIS channel imagery.  As the time period 
of this comparison falls within the “warm-season” over 
the U.S. Southern Plains, cloud “streets” composed of  
 

 
Figure 3: A histogram of the rawinsonde to NOAA Wind 
Profiler height matches for points shown in Fig. 2. 



 

 

 

 
Figure 4: Collocated GOES-12 mesoscale AMV and 
rawinsonde (a) wind direction and (b) wind speed from 
11 April to 1 October 2005 at Lamont, OK. (c-d) Same 
plots but for collocated AMV and NOAA Wind Profiler 
data.  Warmer colors indicate higher scatterplot density. 
  

small cumulus often form during the early afternoon and 
dissipate during the evening.  These clouds appear very 
similar to one another within VIS imagery, making it 
more difficult for the correlation matching procedures to 
distinguish coherent cloud tracers.   This may explain 
some of the larger differences in wind direction.  Also, 
during the afternoon hours, strong solar insolation aids 
in the development of turbulent eddies within the 
convective boundary layer (CBL).  These eddies draw 
higher momentum air downward, increasing the low-
level wind speed.  The Wind Profiler and sonde can 
observe this process, as they are measuring the flow 
from within the CBL, but the GOES satellite Imager 
does not have the needed vertical resolution, and this 
might be contributing to the negative bias in very low-
level AMV speeds. 

a) 

b) 
 Another issue that may be leading to these results 
is related to limitations in VIS AMV height assignment 
accuracies for small (< 4-km width) cumulus clouds.  
VIS AMVs are generally assigned heights via the “IR 
window” technique, where the cloud-top 10.7-μm TB is 
directly related to a NWP model temperature profile.  
When a VIS cloud feature does not fill an entire 4-km IR 
pixel, radiation from the earth’s surface also reaches the 
satellite sensor, causing the IR TB assigned to the VIS 
cloud to be warmer than its true cloud-top temperature.  
Thus, the cloud is assigned a height which is likely too 
low (Bedka et al. 2005), causing the AMV to be 
compared with flow from the wrong Profiler and sonde 
level.  A small VIS cloud feature may be tracked 
perfectly in this case, but the resulting AMV could still 
carry an observation error as a result of this issue. 

c) 

 Table 1 also shows that WV and IR AMVs have 
higher RMS differences and biases than their VIS 
counterparts, but have smaller directional differences.  It 
is important to note that, as IR and WV AMVs are 
primarily derived from upper-tropospheric features, they 
inherently observe flow of higher speed.  Thus, WV and 
IR AMVs are more likely to possess higher RMS/bias 
values because they observe faster atmospheric flow.  If 
the difference statistics are normalized by the mean 
vector speed within the set of matches for the 3 wind 
types, VIS (8.5 ms-1), IR (12 ms-1), and WV (16.5 ms-1), 
VIS and WV vectors have nearly equivalent normalized  d) 

  
Figure 5: A histogram of the distribution of match 
heights for the points shown in Fig. 4.  For reference, 
the bottom bar represents a height layer from 925 to 
875 hPa. 



 

 

 
Figure 6: Collocated GOES operational AMV and 
rawinsonde (a) wind direction and (b) wind speed from 1 
April to 1 October 2005 at Lamont, OK. (c-d) Same plots 
but for collocated AMV and NOAA Wind Profiler data. 
Warmer colors indicate higher scatterplot density. 
 

differences, with the IR differences being slightly higher.  
WV directional differences are likely the smallest 
because upper-tropospheric flow is quite smooth, with 
the tracked WV gradients being consistent in magnitude 
and orientation within a 3-image (30 min) sequence.  
VIS and IR targets (clouds) can evolve more rapidly, 
leading to difficulties in estimating the “true” atmospheric 
flow from a satellite perspective. 

a) 

 
3.3. Operational GOES-12 AMV Comparisons 
 
 Figure 6 is similar to Fig. 4 except that operational 
AMVs produced by NOAA/NESDIS (Nieman et al. 1997) 
are compared to the sonde and Profiler data.  Only 153 
data matches were present during the time frame of this 
study, compared to 1847 from the mesoscale AMV 
comparison.  The operational AMVs have better 
agreement with the sonde/Profiler in both speed (~3.8 
ms-1) and direction (~17°) when compared to the 
difference statistics of the mesoscale AMVs.  
Operational vector speed biases are also smaller than 
those from the mesoscale vectors.  These results are to 
be expected, as the operational AMV processing 
method incorporates a high degree of vector editing and 
quality control.  These post-processing techniques 
provide more “accurate” wind estimates on average, but 
do not allow the operational AMVs to capture the level 
of detail contained within the mesoscale AMV fields (see 
BM05 for comparison of the two processing techniques).  
In addition, the bulk of the operational wind matches 
originate from the WV and IR channels, which appear to 
exhibit lower directional RMS characteristics based on 
the mesoscale AMV comparisons.   Figure 7 shows that 
the vast majority of the operational AMVs are from the 
upper-troposphere, hence the average speed of the 
operational sample (13.8 ms-1, not shown above) is 
higher than that of the mesoscale sample (9.6 ms-1) 
used in this study. 

b) 

c) 

 
  
 

 

d) 

Figure 7: A histogram of the height distribution for the 
points shown in Fig. 6.  The match count scale (x-axis) 
differs from that shown in Figure 5, as the total number 
of operational AMV matches is approx 10% of the 
mesoscale AMV matches. For reference, the bottom bar 
represents a height layer from 825 to 775 hPa. 



 
 
 
 
4. CONCLUSIONS 
 

This study attempts to understand how well satellite 
AMVs can estimate the “true” wind, as measured by the 
NOAA Wind Profiler and rawinsonde at the ARM CART 
SGP Central Facility in Lamont, OK.  Understanding the 
statistical difference characteristics between AMVs and 
actual flow measurements has strong implications for 
their use in aviation flight planning and safety 
applications, as well as in data assimilation.  The first 
phase of this study shows that good agreement exists 
between the Wind Profiler and rawinsonde throughout 
the depth of the troposphere, thereby demonstrating the 
reliability of these data for use as “standards” in 
comparison to AMVs. 

A direct comparison of mesoscale AMVs to these 
data shows RMS directional (speed) differences of ~40º 
(5.1 ms-1) with a speed bias of 1 ms-1.  These 
differences may be attributed to a variety of factors such 
as errors in height assignment and problems in tracking 
evolving low level (1000-850 hPa) cumulus features in 
the VIS band during a U.S. Southern Plains summer. 
The collocated motion vectors are well distributed in the 
vertical with 84% of mesoscale AMV matches being 
derived from the VIS channel.  The normalized VIS, IR, 
and WV AMV RMS statistics show that differences for 
the three channels are nearly equivalent when one 
accounts for the fact that higher wind speeds were 
sampled by IR and WV AMVs. 

 
 
 
 
Mean operational NOAA/NESDIS operational 

directional (speed) RMS differences were found to be 
~17º (3.8 ms -1).  The bulk of these matches were 
associated with IR and WV AMVs in the upper 
troposphere (above 400 hPa).  153 operational AMV 
matches were found here, representing only 8 % of the 
total mesoscale AMV match count.   Data collection for 
this study will continue in time until a statistically 
significant operational AMV dataset is acquired, which 
will allow for a breakdown of statistics into AMV type 
and height. 
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Comparison Type Number 
of Vectors 

Direction 
RMS 

Wind Speed 
Bias 

Wind 
Speed RMS 

Vector 
Bias 

Vector 
RMS 

AMV to Wind Profiler       
All Vectors 1847 40.08 1.05 5.12 .32 7.43 

VIS/IR/WV 1000-851 hPa 225 55.91 -1.27 3.96 3.12 7.41 
VIS/IR/WV 850-701 hPa 456 45.6 2.10 4.97 .07 7.29 
VIS/IR/WV 700-400 hPa 593 33.36 .75 4.57 .23 6.89 
VIS/IR/WV 400-100 hPa 573 32.33 1.42 6.10 .72 8.07 

VIS only 1557 42.07 .85 4.49 .32 6.96 
IR only 165 31.91 2.16 7.51 2.20 9.83 

WV only 125 18.69 2.32 7.85 1.18 9.25 
       

AMV to Rawinsonde       
All Vectors 1847 41.01 1.01 5.19 .63 7.61 

VIS/IR/WV 1000-851 hPa 225 59.95 -.48 3.84 2.86 7.65 
VIS/IR/WV 850-701 hPa 456 44.23 2.03 4.77 .87 6.99 
VIS/IR/WV 700-400 hPa 593 34.79 .89 4.71 .41 7.04 
VIS/IR/WV 400-100 hPa 573 33.19 .92 6.35 .54 8.57 

VIS only 1557 42.65 .89 4.56 .50 7.05 
IR only 165 36.09 1.64 7.83 1.98 10.44 

WV only 125 22.09 1.86 7.66 1.26 9.73 

Table 1: Mesoscale AMV comparisons to both Wind Profiler and rawinsonde, separated by AMV height and type. 
Positive speed and vector biases indicate that the GOES AMV is faster than the sonde or Profiler. 
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