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1. INTRODUCTION 
It is widely accepted that probabilistic 
weather forecasts have the potential to 
provide more useful information for decision 
support than deterministic forecasts, 
Hallenbeck, 1920, Sanders, 1963, Katz and 
Murphy, 1997. Finding metrics to quantify 
this comparison has proven somewhat 
elusive, Wilks, 2001, Jolliffe and 
Stephenson, 2003. More complicated still is 
the issue of comparing the skill and value of 
a probabilistic forecast system, with the 
value and skill of a deterministic forecast 
system that it is intended to replace, 
Gringorton, 1958. How do we quantify the 
improvement? 

This presentation is primarily a tutorial in 
which several standard concepts are 
presented in a way that provides some 
insight into these issues. Standard skill 
measures, the Brier Score (BS) and the 
Peirce Skill Score (PSS) are discussed in 
the probabilistic and deterministic contexts. 
The PSS is examined from the viewpoint of 
Decision Theory, as a measure of skill for 
both deterministic and probabilistic forecast 
systems. Geometric interpretations are 
provided. 

2. SKILL MEASURES 
A deterministic forecast predicts the 
occurrence of an event, while a probabilistic 
forecast provides the probability that the 
event will occur. There is a wealth of skill 
scores for deterministic forecasts; listings 
can be found in Murphy and Daan, 1985, 
and Wilks, 1995.  
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An interesting history of the evolution of 
these score is found in Murphy, 1996. The 
most widely used skill score for probability 
forecasts is the Brier Score, Brier, 1950. The 
area under the ROC curve has recently 
received considerable attention, Mason and 
Graham, 2002, though more as a measure 
of the skill of application of the probability 
forecast, than of its intrinsic merit. All of this 
material is reviewed in Jolliffe and 
Stephenson, 2003. 

Sanders (1963) noted that if the probability 
forecast is confident (issues a probability of 
0 or 1) then it is effectively a deterministic 
forecast. Stated otherwise, a deterministic 
forecast is a special case of a probabilistic 
forecast, and can be viewed as a limiting 
case of probability forecasts as they become 
more confident. What is the behavior of a 
skill score for a probability forecast during 
this limiting process? 

By wide agreement, the worst and best of 
the skill scores for deterministic forecasts 
are, respectively,  the Finley Hit Rate (FHR) 
and the PSS, Murphy and Daan, 1985 and 
Murphy, 1996. The FHR was an minor issue 
is an otherwise significant paper by Finley, 
1884. Testament that the Peirce Skill Score, 
Peirce, 1884, is a major contribution to 
forecast verification is that it has been twice 
rediscovered by men of substantial 
statistical reputation, Kuipers in 1965 and 
Flueck in 1987, the latter declaring it to be 
the True Skill Statistic.  

We shall briefly review the definitions of 
these scores, since the formulas will be 
needed in the subsequent discussions. 
Consider a deterministic forecast (f) of a 
binary event, with a history of N trials. In 
some trials the event occurs (T) and in some 
it fails (F). In some trials the forecast is for 
occurrence (Y) and in some for non-



occurrence (N). We count the cases: A = 
#(Y&T), B = #(Y&F),  C = #(N&T), D = 
#(N&F). In this notation, FHR = (A+D)/N, the 
sample probability of a correct forecast, both 
of occurrence and of non-occurrence. The 
PSS is most simply expressed in terms of 
sample conditional probabilities. We note 
that P(T) = (A+C)/N and P(F) = 1 – P(T). By 
Bayes relation, P(Y|T) = P(Y&T)/P(T) = 
A/(A+C) and P(Y|F) = B/(B+D). In this 
notation, PSS = P(Y|T) – P(Y|F), the 
probability of a correct forecast minus the 
probability of a false alarm. The PSS is a 
statistic if we define it intrinsically in terms of 
these conditional probabilities, and view the 
sample probability formulas as merely 
providing a sample statistic. 

For probability forecasts, the Brier Score is 
defined as a quadratic expression of the 
events. For each trial, let fi denote the 
forecasted probability and let oi denote the 
observed outcome, which takes value 1 for 
observed occurrence and 0 for non-
occurrence. Then BS = (1/N) Σ (fi – oi)2. 
There is a rich documentation of the utility of 
the application of BS to the measure of 
probabilistic forecasting success. It also has 
a legitimate mathematical explanation: if f is 
viewed as a probability measure on the 
space of forecast trials, and o is the atomic 
probability measure of observed outcomes, 
then BS is the L2-norm of the difference of 
these measures.  

There is a deficiency in the interpretation of 
BS as the probability forecast f becomes 
confident. In this case, each fi has value 0 or 
1 and so the terms (fi – oi)2 take value 1 or 0, 
depending on whether  of not the forecast 
and the observation agree. Therefore, BS = 
(B+C)/N = 1 – FHR. If we compare the skill 
of a probability forecast and a deterministic 
forecast of the same situation, by means of 
BS, then we are evaluating skill by a poor 
measure of skill for deterministic forecasts.  

We propose to resolve this dilemma by 
expanding the definition of the PSS to 
probabilistic forecasts. For deterministic 
forecasts, we can view the count A as the 
sum of the fi when T (the event does occur): 
some with value 1 (forecast occurrence) and 
some with value 0 (forecast non-
occurrence); C is the sum of contrary 
values. Note that A/(A+C) is the sample 
estimate for the average value forecasted 

when the event occurs, i.e. the expectation 
E(f|T). Similarly, B/(B+D) is a sample 
estimate for E(f|F). But then PSS = E(f|T) - 
E(f|F), and this definition applies to any 
probabilistic forecast. Moreover, as the 
forecasts become confident, the value of 
PSS converges to the standard skill statistic 
for deterministic forecasts. We propose that 
PSS should be considered as the common 
metric by which probabilistic forecasts are 
compared with competing deterministic 
forecasts. This process permits us to extend 
the definition of any contingency-based skill 
score to probabilistic forecasts. 

3. DECSION THEORY 
Classical Decision Theory, Van Trees, 1968, 
provides graphical interpretations of the 
roles that the conditional probabilities play in 
measuring the utility of forecasts for decision 
support. In particular, there is an illustrative 
interpretation of the extension of the PSS to 
probabilistic forecasts. The illustration is 
provided in Figure 1, in which two probability 
distributions are indicated. On the right, is 
the distribution of the forecasted 
probabilities, when the event occurred, and 
on the left is the distribution of probabilities 
when the event failed to occur. The means 
of these distributions are indicate by vertical 
dashed lines. The PSS is the distance 
between these means. A frequent 
application of probabilistic forecasts is to 
choose a separating threshold (τ) and to 
anticipate an event to occur when the 
forecasted probability exceeds τ. The 
failures of this process are measured by the 
erroneous tails of the distributions. When the 
separation (PSS) is large, we can expect a 
successful separation. 

 

Figure 1. An illustration of PSS measuring 
the separation between the T and F 
probability distributions. 

 

PSS 

0  1E(f|F) E(f|T)



 

4. CONCLUSIONS 
There is a need for measures that can be 
used to compare the skill of probabilistic 
forecasts with the skill of the deterministic 
forecasts that they are intended to replace. 
There is little merit in replacing a skillful 
deterministic forecast with a less skilled 
probabilistic forecast. The Brier Score has 
questionable value for measuring the skill of 
deterministic forecasts, since it provides an 
inferior measure of skill for deterministic 
forecasts. We have presented an extension 
of the Peirce Skill Statistic that applies 
consistently to probabilistic and to 
deterministic forecasts, and which may 
prove useful for making probabilistic-
deterministic comparisons.  
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