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1. INTRODUCTION

As part of the NOAA/NESDIS Alaska SAR
Demonstration Project (Pichel and Clemente-Colon,
2000), a multi-year demonstration of the production and
use of RADARSAT SAR HH polarization imagery to
generate products in a pre-operational environment, a
wind product is created that automatically generates
wind vectors over the coastal ocean.  Two methods are
used.  One uses wind directions from atmospheric
models that are run over the same region and close in
time to the SAR image collection.  These directions are
then combined with the radar cross section from the
SAR imagery to generate wind speed using a
scatterometer model for VV imagery, and an
empirically derived correction to the VV model for HH
imagery, to generate the relationship between radar
cross section and wind speed (Monaldo et al., 2001).
The second method estimates the wind direction from
the SAR imagery itself using large-scale features that
are  aligned  with  the  local  wind,  such  as  wind  rows,
elongated convective cells, or surfactant streaks, then
combines this direction with the radar cross section of
the imagery to generate wind speed.  The currently
implemented algorithm for estimating wind direction
from the SAR imagery is based on a spectral approach
that  uses  the  Fourier  transform  of  image  subsets  to
automatically determine directions of maximal spectral
energy, then assumes that these directions correspond to
90° from the wind direction (Wackerman et al., 1996;
Fetterer et al., 1998).   This direction is then combined
with the image radar cross section to generate wind
speed using the same scatterometer model for VV and a
semi-analytical two-scale model to derive the HH
relationship between radar cross section and wind speed
(Wackerman et al., 2002).  The directions estimated
from  the  SAR  imagery  have  an  inherent  180°
ambiguity, since from a static image one can at most
estimate the line along which the wind is blowing, but
not the direction along that line.

One significant problem with estimating wind
directions from SAR imagery is that there may not
 ------------------------------------------------------------------
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always be features in the image that the algorithm can
use to estimate directions.  Convective cells, wind rows,
and surfactant streaks depend on there being other
processes going on (such as turbulence or very little
mixing of the near-surface ocean layer) rather than
simply the existence of a wind field.  The spectral
approach that is currently implemented has no means of
determining when a wind direction is able to be
estimated from a region of the SAR image, and thus
will often generate erroneous directions over featureless
regions of the ocean surface.  Therefore a study was
initiated to develop a new approach for estimating wind
directions, referred to here as the projection method,
that would be able to recognize when no robust
estimate of direction was able to be extracted from the
imagery.

2. BACKGROUND

Satellite-based Synthetic Aperture Radar (SAR) sensors
provide high resolution (12 to 100 meters) images of
the earth’s surface day or night and during most
weather because they are active sensors operating in the
microwave wavelengths (usually 3 to 20 centimeters).
This makes them a potentially highly useful device for
monitoring the earth, so much research has been done
to determine the range of geophysical parameters that
can be accurately estimated from SAR images.  In
particular, extracting environmental information from
SAR images over the ocean has been an area of
research for many years, and multiple approaches have
been developed for characterizing a range of ocean
parameters such as waves, winds, surf and currents.
The work in this paper focuses on the use of SAR
images to estimate wind vectors over the ocean and in
coastal waters, and in particular to develop an
operational and automated approach.  If proved reliable,
SAR images may be the only way to provide high
spatial resolution wind vectors in coastal regions.

Almost all of these approaches to extract
environmentally information from SAR images over the
ocean  are  based  on  a  standard  theory  for  how  a  SAR
images the ocean. This theory, often referred to as
Bragg scattering (see Wright (1968) and Valenzuela
(1978)) assumes that the variations in the SAR image
brightness (or intensity) are proportional to the
amplitude of ocean surface waves that are resonance to
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the electromagnetic wavelength of the SAR sensor.
These resonant ocean waves will have a wavenumber
kB (where  k  =  2π/λ and λ is  the  wave  length  of  the
wave) such that kB = 2kEMsin[θ]  where  kEM is  the
wavenumber of the electromagnetic wavelength and θ
is the incidence angle of the sensor.  In addition, these
resonant waves need to be propagating either directly
toward or away from the sensor.  Thus the SAR is only
observing very small-scale waves that are propagating
in very specific directions.  However, these small-scale
waves are highly responsive to the local wind.  As the
local wind speed increases the amplitudes of these
waves increase and thus the SAR image brightness
increases.  This phenomena forms the backbone of
wind retrieval from SAR since it implies that the mean
SAR image brightness (or radar cross section (RCS) as
it is referred to when the image is absolutely calibrated)
can be related to the local wind speed and direction.
Note that wind direction (relative to the direction the
sensor is looking) is very important because the
amplitude of the small-scale waves will change
significantly according to their propagation direction
with respect to the local wind.  This means the SAR
image RCS will also change as the SAR look direction
changes even though the wind speed stays constant
since the RCS is proportional to the amplitude of the
waves it observes.

Much work has been done to determine how to estimate
wind vectors from SAR imagery based on this theory.
The general approach is shown in Figure 1.  It assumes
a model that predicts the RCS given wind speed and
direction.  The procedure is to estimate the local RCS
from the SAR image, estimate wind direction either
from the SAR image or from some other source (most
often from satellite-based scatterometers or from
atmospheric models) then find the wind speed that
reproduces the observed RCS.

What differentiates the various approaches are the RCS
model used and the manner to estimate wind direction.
For the European ERS-1/2 SAR sensors, which operate
in VV polarization, the RCS model comes from
validated scatterometer models (Vachon and Dobson
(1996); Wackerman et al. (1996); Fetterer et al. (1998);
Lehner et al. (1998); Lehner et al. (2000)).  For the
Canadian RADARSAT-1 SAR sensor, which operates
in HH polarization, no such validated models exist so
two approaches have been tried.  The first is to derive
an empirical modification to the VV models to convert
them to HH polarization (Horstmann et al. (2000a);
Horstmann et al. (2000b); Thompson and Beal (2000);
Vachon and Dobson (2000); Horstmann et al. (2002);
Monaldo et al. (2001)).  The second approach is to
derive analytical models directly for HH polarization
(Wackerman et al. (2002)).

Various approaches have also been developed for
estimating the wind direction.  One class of approaches
estimates wind direction from the SAR image itself by
noting that there are features in the imagery that tend to
be aligned with the local wind.  These can be wind
rows, elongated convective cells, or surfactants on the
ocean surface.  These directions can be estimated in the
spectral domain via Fourier transforms (Gerling (1986);
Vachon and Dobson (1996); Wackerman et al. (1996);
Fetterer et al. (1998); Lehner et al., (1998); Horstmann
et al. (2000a); Horstmann et al. (2000b); Vachon and
Dobson (2000)) or in the image domain via gradient
estimators (Horstmann et al., 2002) or wavelet analysis
(Du et al. (2002); Fichaux and Ranchin (2002)).  The
advantage  of  this  class  of  approaches  is  that  they
generate  the  full  wind  vector  solely  from  the  SAR
image without reference to any other data.  The
disadvantages are that the resulting wind directions
have a 180° ambiguity (since from a single SAR image
the feature alignment is ambiguous with respect to
±180°) and the features that are being used may not
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Figure 1: General approach to wind vector estimation using
a SAR image.
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always be present in the SAR image or aligned with the
wind.  The second class of approaches utilize either
simultaneous satellite-based scatterometer observations
or atmospheric models to derive wind directions
(Thompson and Beal (2000); Monaldo (2000); Monaldo
et  al.  (2002)).   This  class  of  approaches  has  the
advantage that a wind direction will always be available
since it is derived separately from the SAR image.  The
disadvantage, particularly in the use of atmospheric
models, is that the directions might not correspond
accurately enough to the SAR image data.

Table 1 gives a summary of performance for these
algorithms drawn from a sample of the published
literature.  Shown in Table 1 is the reference for the
results and the sensor used (ERS = the ERS sensor,
RAD  =  the  RADARSAT  sensor)  with  the  number  of
images that went into the error estimation (although the
Vachon and Dobson (2000) results are for the number

of comparisons since the number of images was not
described).  Next is shown the root-mean-squared error
(RMSE) for estimating wind direction from the SAR
image. Note that all but the two indicated results used
spectral approaches for estimating wind direction.
Finally, the RMSE for wind speed is shown where three
different wind directions are used.    In the first column
the  direction  derived  from  the  SAR  image  is  used,  in
the next column directions from a satellite-based
scatterometer are used, in the last column directions
from  an  atmospheric  model  are  used.   For  the
atmospheric models, the model name is indicated below
the error.  The performance of the various algorithms
are very similar, and to derive a general sense of
performance, the RMSE values are averaged over the
different sources and shown on the bottom.  General
wind direction RMSE is 31 degrees and wind speed
RMSE is around 2.2 m/s.

Source Sensor/# of
images

Dir.
RMSE

Speed RMSE
(SAR dir.)

Speed RMSE
(Scat. dir.)

Speed  RMSE
(model dir.)

Wackerman et al. 1996 ERS/9 19° 1.2 m/s
Fetterer et al. 1998 ERS/61 37° 2.0 m/s
Vachon and Dobson 2000 ERS/651 40° 1.9 m/s
Vachon and Dobson 2000 RAD/771 40° 2.4 m/s
Horstmann et al. 2000a RAD/4 2.7 m/s
Horstmann et al. 2000a RAD/9 2.9 m/s

(HIRLAM)
Fichaux and Rachin 2002
(direction via wavlets)

ERS/1 16°

Horstmann et al. 2002
(direction via gradient)

RAD/20 22° 3.5 m/s

Monaldo et al. 2001 RAD/2862 2.0 m/s
(NOGAPS)

This paper (directions via
projection method)

RAD/2131 41° 2.2 m/s

Average Value 31° 2.2 m/s 2.7 m/s 2.5 m/s
1 Number of comparisons, not  number of images.
Table 1: Summary of wind vector estimation performance from various published papers.

3. PROJECTION METHOD FOR WIND
DIRECTION ESTIMATION

There are a number of problems with the existing
spectral based approach for estimating wind direction
directly from the SAR image.  One problem is that
there may not be a feature aligned with the wind in all
parts  of  the  image,  and  it  would  be  ideal  if  the
algorithm could recognize this and not report a wind
direction for image regions that do not have sufficient
signatures.   A second problem is  with  the  accuracy of
estimating directions from low frequency information
in the spectrum.  Because the image features aligned
with the wind often have large scales, their spectral
energy is clustered near to the origin.  Estimating the

direction of elongation of that energy (the dominant
method that spectral approaches use to estimate wind
direction) can often therefore only be done in
increments of 45 degrees because of the sampling of the
spectral energy that close to the origin.

To try and address these problems, we have developed
a new approach to estimating wind direction directly
from  the  imagery  based  on  projections  of  the  image
values at various angles.  By the Projection-Slice
theorem, the projection of an image is equal to the
Fourier transform of a radial cut through the Fourier
transform  of  the  image.   Thus  by  working  with
projections in the image space, we can sample
directions in the spectrum as finely as we want, without
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being hampered by the spectral spacing close to the
origin.  This solves the second problem mentioned
above.  To address the first problem, we have
implemented a test on the contrast or variations of the
projections in order to determine when a feature of
sufficient “strength” is present in the image to use for a
wind direction estimate.  If such a feature is not present,
we can then move on to a different portion of the image
and not generate a wind vector over such “blank”
regions.  Thus we only generate wind vectors over
portions of the image that contain adequate features.

It should be noted that mathematically we haven’t
changed much from the previous spectral approach.
Estimating the contrast or variation of the projection of
an image is mathematically equivalent to finding the
spectral energy or extent along a radial line of the
image spectrum.  Thus we would have achieved the
same algorithm by simply re-sampling the image
spectrum along radial lines and looking for the lines of
largest spectral extent or spectral energy.  However, it
is computationally easier to work with image
projections; a look-up table can be generated initially to
determine which image subset samples get added into
which projections and then each set of projections can
be calculated with just a look-up and summing
operation.   Also,  by  working in  the  image domain,  we
can be somewhat more intuitive in how we estimate
feature “strength” for thresholding.

The new algorithm proceeds as follows.  The user
determines a window size that will be moved through
the image, and for each placement of the window one
wind vector will be estimated. The window size should
be driven by the scales of the features that are going to
be used to estimate wind direction.  For wind rows,
these  are  typical  from  3  to  10  km,  so  usually  the
window should  not  be  much smaller  than  10  km.   For
the results in this paper, a 24 km window was used and
the window was shifted every 16 km to generate a new
wind  vector  estimate,  thus  there  is  some  overlap  of
image samples used to create successive wind vectors.
For  a  given  window  placement,  the  projection  of  the
image samples within the window along a direction are
generated for directions from -90° to +90°.  That is, for
each direction a one-dimensional function is generated
by stepping through the middle of the window in the
specific direction, and at each image sample along that
direction averaging all of the image samples that are in
the orthogonal direction.  For the results in this paper a
projection was calculated every 1°,  however  in  the
results below (particularly Fig. 3) it can be seen that
one  could  use  a  coarser  angular  sampling  of  the
projections as long as the peaks of the feature contrasts
(as defined below) can be resolved.  This projection is
then flattened to remove linear trends in the function.

As mentioned above, the projections are generated by
creating a look-up table initially that maps the image
samples to the projection lines that image sample need
to be summed into.  This look-up table is the same for
every placement of the window, so each set of
projections from a given window placement is
generated simply by a look-up and sum operation.

Fig. 2 shows an example where the right image displays
the  SAR image values  within  a  local  window,  and the
left image displays the resulting projections for the full
range of angles, with a different projection at each line.
The algorithm needs to locate the angle of the
projection that contains the largest fluctuations.  This
will be the projection that is orthogonal to the “crests”
of  the  wind  row  features  observed  in  the  SAR  image
subset.   In  the  projection  image,  one  can  see  that  this
projection angle occurs at approximately +45º where
very  bright  and  dark  “blobs”  can  be  seen  in  the
projection.  A number of metrics could be used to
estimate fluctuations in the projections.  We have
implemented the contrast (standard deviation divided
by the mean) calculated for the whole projection line,
however other groups use the gradient (Horstmann et
al., 2002) over various spatial scales (note that the one-
dimensional gradient along a projection line is
equivalent to a two-dimensional gradient in the
direction of the projection line) and one could also use
the spectral content of the projection over some spectral
window.    Note  that  this  last  approach gets  us  back to
the original spectral algorithm, when the spectrum
energy only within an annulus is used.  We have
implemented the contrast mainly because it is easy to
calculate, and we have not yet found any compelling
evidence that one metric is significantly better than
another.

Fig. 3 shows the resulting contrast plot generated from
the  projections  shown  in  Fig.  2.   If  the  maximum
contrast value is above some threshold, then 90° from
this direction is the estimated wind direction for this
window.  For the results in this paper, the contrast
threshold  was  set  to  0.04  based  on  manual  analysis  of
the  obvious  visual  features  in  the  imagery.   Note
however that although this metric is invariant to scale
factors, it may depend on the processor used since the
contrast of a feature will change whether the image was
saved as 8 bits, 16 bits, in log values, etc.  Thresholding
the contrast of the projection allows the algorithm to
not generate a wind direction for image regions where
there are no features with sufficient modulation to be
used for wind direction estimation.

Fig.  4  shows  the  results  of  varying  the  contrast
threshold for a SAR image.  The top left image shows
direction results (indicated as white lines on the image)
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when no threshold is applied.  The top right and bottom
images show results for thresholds of 0.03 and 0.06
respectively.  Note that as the threshold increases, we
filter out all but the highest contrast features to use, and
automatically eliminate the low contrast regions which
were generating erroneous directions under the spectral
approaches.  As mentioned above, we chose 0.04 as the
threshold.

The next step in the algorithm is to eliminate outliers;

wind directions that are significantly different than their
neighbors.  This is done by calculating, for each output
wind vector, the total number of wind vectors in a 5 x 5
neighborhood around the output wind vector, and the
number of vectors in the neighborhood that have the
same direction (less than 30º absolute difference).  If
there are less than 7 neighbors, we leave the vector
alone since there is not enough neighbors to make a
determination as to whether the direction is an outlier.
If there are at least 7 vectors in the neighborhood but
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Figure 2: Right image shows a subset of a SAR image with wind row features.  Left image shows the
resulting projections from the image subset.
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Figure 2: Right image shows a subset of a SAR image with wind row features.  Left image shows the
resulting projections from the image subset.
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Figure 3: A plot of contrast versus projection angle for the projections shown in Fig. 1.  The global
maximum at an angle of approximately +45º is the estimated wind direction.

Finding the Angle with Maximum Contrast

0.00

0.02

0.04

0.06

0.08

0.10

0.12

-100 -75 -50 -25 0 25 50 75 100
Angle of Projection (degs)

C
on

tr
as

t o
f P

ro
je

ct
io

n

Figure 3: A plot of contrast versus projection angle for the projections shown in Fig. 1.  The global
maximum at an angle of approximately +45º is the estimated wind direction.
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only 3 or less neighbors have the same direction, this
vector is considered an outlyer and removed.

The final step in estimating wind vectors is to apply a
median-like operation to the wind vectors to smooth the
vector field.  This is done by replacing the wind vector
in the middle of a local box by the vector within the box
that minimizes the norm of the difference between that
vector and all of the others within some local region
(we use 11 x 11 vectors).  Note that this approach has
the advantage of only using wind vectors that have been
estimated from the image (i.e. we do not average
vectors such that a resulting vector was never seen

anywhere in the image), and of preserving wind fronts
in the final wind vector map.  The amount of smoothing
is controlled by the number of times the median filter is
iteratively applied.  We use only a single iteration to
provide the smallest amount of smoothing.

To  generate  a  uniform  wind  field,  wind  directions  are
generate over image locations for which we did not
have an appropriate feature for estimating the direction
directly by interpolation from surrounding directions.
The interpolation is done as a weighted linear
combination where the weights are 1/(distance**2) and
we make sure that we use the nearest locations in all

Figure 4: Examples of using the threshold on projection contrast to remove image regions with no
strong features.  Top left image shows estimated wind directions (white lines) with no threshold, top
right image has a threshold of 0.03, and the bottom image 0.06. The red line on the left shows the
buoy derived wind directions.  Image was collected March 29 2000 at 10:51:14. ©Canadian Space
Agency 2000

Figure 4: Examples of using the threshold on projection contrast to remove image regions with no
strong features.  Top left image shows estimated wind directions (white lines) with no threshold, top
right image has a threshold of 0.03, and the bottom image 0.06. The red line on the left shows the
buoy derived wind directions.  Image was collected March 29 2000 at 10:51:14. ©Canadian Space
Agency 2000



7

four quadrants.  The wind speed then comes from using
this direction with the local RCS values.  In the images
that follow, thick white line represent wind vectors for
which the directions came from the image, thin lines
represent wind vector for which the directions came
from interpolation.

4. PROJECTION ALGORITHM
PERFORMANCE ON RADARSAT IMAGERY

To determine how well the projection approach
estimated the actual wind direction we used a series of
RADARSAT SAR images collected off the east coast
of the United States for which there was buoy wind
information generated approximately simultaneously
with the image acquisition and located spatially within
the SAR image.  The SAR imagery was processed at
the Alaska Satellite Facility and represented 100 m
resolution imagery with 50 m sample spacing.  The
buoy winds were converted to 10 m winds to make
them consistent with the radar cross section models
being used to estimate wind speed.  The buoy
information was compared to wind vectors estimated
from the SAR image derived close to where the buoy
was located.  We eliminated any comparisons that
occurred at incidence angles less than 25° due  to
possible calibration errors in the processed image, any
comparisons for which the SAR-derived vector was

more than 48 km away from the buoy location, and any
comparisons for which the buoy wind speed values
were less than 5 m/s, since for these locations there may
be no significant radar cross section response from the
ocean surface.  Note that although 48 km is somewhat
far from the in situ observations for comparison, it was
used since that was twice the size of our local image
window.

 These constraints resulted in a total of 213
comparisons between buoy observations and wind
vectors estimated from the SAR imagery.  A plot of
SAR-derived wind direction vs. buoy wind direction is
shown  in  Fig.   5.   Due  to  the  180° ambiguity in the
SAR-derived directions, a value of 180 was added or
subtracted from the SAR-derived direction to get it
within ±90° from the buoy direction.  In Fig. 5 the solid
black line represents a perfect answer, i.e. the SAR-
derived direction equals the buoy direction, and the
dashed lines are ±90° from the solid line which
represents the region of possible SAR-derived values.
The final root-mean-squared error (RMSE) is 41°
(mean error  of  7°).  Note that if we were to randomly
assign a direction uniformly in the range of [-90°, +90°]
we would expect a RMSE of 52°, which looks like we
are only slight better than a random guess.  However,
an  examination  of  the  errors  in  Fig.  5  shows that  they
are not uniformly distributed, but rather tend to cluster
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Figure 5. Scatterplot of actual wind direction from buoy observations vs. SAR-derived wind
directions.  The total RMSE is 41º, the mean error is 7º.  If we remove seven images that have
features not aligned with the wind, the RMSE becomes 39º.
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around the “perfect” line.  This is shown quantitatively
in Fig. 6, where a histogram of the absolute value of the
direction error is plotted.  The x-axis of Fig. 6 is the top
value of the error bin for the histogram.  Thus the first
point represents errors of 10° or less, the second points
represents errors between 20° and 10°,  etc.   Fig.  6
indicates that 54% of all of samples have an absolute
direction  error  that  is  less  than  30°.   Note  that  if  we
were uniformly guessing a direction, the histogram in
Fig.  6  would  be  a  flat  line  around  0.1.   The  results  in
Figs. 5 and 6 were generated automatically; the
algorithm was run with no user interaction or
modification of the resulting directions.

Fig. 5 shows that there are a number of comparisons for
which the estimated wind direction is as worse as it can
get; i.e. 90° from  the  true  direction.   In  fact,  Fig.  5
shows a number of isolated points that are almost right
on the ±90°.  From manually examining these images
we have found that typically these are caused by there
being a feature in the image that has high contrast but is
not aligned with the local wind.  Usually these are lee
waves near to a coastline or island, convective cells
caused by large downdrafts, or surfactant streaks being
oriented by a current instead of the local wind.  This is

one of the significant remaining problem with
automated extraction of wind directions from SAR is
being able to automatically classify the image features
(i.e. into convective cell, current front, wind row, wind
front, surfactants, etc.) so that we can eliminate those
high contrast features that are not connected with the
local wind (such as lee waves) or which need to be
treated differently then just aligning with the direction
of highest contrast (such as convective cells).

We will note however that there were seven images for
which either the algorithm was keying on a feature not
aligned with the wind (lee wave, convective cell, or
current front) or the buoy data just did not appear to
align with the image information.  If we removed these
from consideration, we lost ten of the comparisons out
of 213, but this decreased the RMSE to 39º. Thus these
seven  images  had  a  large  impact  on  the  error.
However,  since  we  do  not  have  an  automated  way  to
estimate these types of features, we have not included
this error into the operational estimate.

Fig. 7 shows a comparison of estimated wind speed
versus  buoy  wind  speed  for  this  data  set.   The  black
dots  used  the  wind direction  as  derived from the  SAR
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Figure 6: histogram of the absolute value of the direction error.  X-axis is the bin value for the
error, y-axis is the ratio of points that fall into that bin.  Note that 52% of the samples have errors
less than 30º.
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image and the radar cross section model in (Wackerman
et al., 2002).  The RMSE is 2.2 m/s (mean error = -0.28
m/s).  The red dots used the buoy wind directions and
the  same  radar  cross  section  model;  the  RMSE  is  2.1
m/s  (mean  error  =  -0.59  m/s).   Note  that  there  is  not
much difference between using the SAR-derived
directions or the buoy directions, other than a cluster of
5 points in the upper, center, indicating that error in
wind direction are not the dominant cause of the scatter
in wind speed estimation.

In summary, the algorithm has been tested operationally
on RADARSAT imagery that contained in situ buoy-
derived wind speed and direction information.  The
algorithm was run automatically without any user
inputs.  The wind direction root-mean-squared error is
41º, with a mean error of 7º.  The wind speed root-
mean-squared  error  is  2.2  m/s,  with  a  mean  error  of  -
0.28 m/s.   If we remove seven images with “bad”
features, the RMSE for direction drops to 39º.
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