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1. INTRODUCTION 
 

Weather generators are statistical models 
aimed at providing data to augment the existing 
climate record at a site or, through interpolation of 
model parameters, provide climate information 
where measured data are not available (Johnson 
et al. 1996; Wilks and Wilby 1999).  Such models 
have several inter-connected components and 
usually simulate maximum and minimum daily 
surface air temperatures (Tmax and Tmin), solar 
radiation (R), and precipitation occurrence (Po) 
and amount (Pa).   

The most widely used weather generator is 
the autoregressive model introduced by 
Richardson (1981) and Richardson and Wright 
(1984), which is based on the multivariate 
autoregressive process described by Matalas 
(1967).  Many studies have altered the original 
approach through changes in the way the 
parameters are computed (e.g., Schoof and 
Robeson, 2003), inclusion of additional variables 
(e.g., WXGEN, Nicks et al. 1990; GEM, Hanson 
and Johnson 1998), or relaxation of normality 
constraints for the added variables (e.g., Parlange 
and Katz 2000), but the basic structure of the 
model has remained unchanged.  As shown in 
Schoof and Robeson (2003), even with 
improvements to the model parameterizations, 
autoregressive weather generators still 
occasionally produce fundamental simulation 
errors, such as negative diurnal temperature range 
(DTR) (e.g., Tmin greater than Tmax).  Additionally, 
Harmel et al. (2002) have indicated that monthly 
Tmax and Tmin probability distributions are generally 
skewed, and that generating temperatures with the 
normal distribution can lead to physically unlikely 
values.  In this study, we present an alternative to 
autoregressive weather generators based on 
spectral methods.  It is anticipated that by 
removing normality constraints and focusing on 
Tmin and DTR rather than Tmin and Tmax, some of 
these problems may be overcome.  
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Figure 1: Map showing cooperative station 
locations. 
 
2. STUDY AREA AND DATA 
 

The weather generator described in this 
extended abstract is motivated by the research 
team’s involvement with the Southeast Climate 
Consortium, a group consisting of members from 
six universities in the Southeast USA focused on 
climate variability and risks to agriculture, forestry, 
and water resources in the region (see 
http://secc.coaps.fsu.edu).  Climate variability 
within the study region (Figure 1) exhibits strong 
links to El Niño/Southern Oscillation (ENSO), 
which, in turn, impacts the aforementioned sectors 
(Hansen et al. 1998, 1999).  Our weather 
generator is therefore also conditioned on ENSO 
phase based on the Japanese Meteorological 
Agency tropical Pacific Ocean (4°S-4°N and 
150°W-90°W) SST anomalies (JMA-SST; see 
Hanley et al. 2003), and the Florida Climate 
Center provides years with their respective ENSO 
phases (Table 1).  In the remainder of this paper, 
we refer to La Niña as the cold phase and El Niño 
as the warm phase. 

NWS cooperative station network data (Tmax, 
Tmin and precipitation) are used for 
parameterization and evaluation of the weather 
generator.  We generate data for nine locations, 



each with data for at least 1950-2003 and less 
than 5% missing data for each ENSO phase 
(Table 2, Figure 1).  Solar radiation data are not 
available for these stations.  Therefore, our current 
focus is on generation of the temperature and 
precipitation variables.  Methods for generation of 
radiation from the generated variables are 
currently being investigated.     

  
 

Table 1:  List of La Niña (cold SST), Neutral, and 
El Niño (warm SST) years as defined by the JMA-
SST anomalies.  ENSO years begin on October 1 
of the posted year and end on September 30 on 
the subsequent year.  For example, the 1997 El 
Niño year began on October 1, 1997 and ended 
on September 30, 1998. 

 
 
 
Table 2:  List of NWS cooperative weather 
stations used in this study. 
 

 
 
 
 

3. WEATHER GENERATOR DESCRIPTION 
 
3.1. Precipitation Occurrence 
 

Our weather generator adopts the spell length 
approach to generate precipitation occurrence 
(Buishand 1978; Racsko et al. 1991).  In this 
approach, alternating wet and dry spells are 
produced with random lengths based on 
probabilities computed on a monthly basis from 
the observed data.  The lengths of the wet and dry 
spells are modeled using geometric distributions 
which reduces this approach to that of a two-state 
first-order Markov chain model, which has been 
demonstrated to work well in the southeastern 
USA (Wilks, 1999).      

 
3.2. Precipitation Amount    
 

Once the precipitation occurrence component 
of the weather generator generates a wet day, the 
precipitation amount is drawn from a mixed-
exponential distribution:  
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where µ1 and µ2 are the means of two exponential 
distributions and α is the mixing parameter.  
Parameters for this distribution are determined 
through maximum likelihood estimation using the 
observed data and are computed separately for 
each month.      
 
3.3. Minimum Temperature (Tmin) and Diurnal 
Temperature Range (DTR)  
 

The process of generating Tmin and DTR 
begins by computing their monthly means and 
standard deviations for each month in the 
observed record and ENSO phase, as well as the 
wet and dry day means and standard deviations, 
and monthly skewness.  The data for each 
individual month, Tt, are then detrended and 
subjected to a discrete Fourier transform and the 
resulting spectral estimates, TƒTf*, represent the 
temperature (either Tmin or DTR) variance present 
in the data across different frequencies.  By 
averaging the resulting TƒTf* for each calendar 
month and ENSO phase, we find HfHf*, an 
ensemble mean spectral estimate (e.g., the 
average Tmin spectrum for January during the cold 
phase of ENSO).  The square roots of the average 
spectral estimates, *fff HHH =  represents 

La Niña 
Phase 

Neutral Phase El Niño 
Phase 

1949, 1954, 
1955, 1956 
1964, 1967, 
1970, 1971 
1973, 1974, 
1975, 1988 
1998, 1999 

1950, 1952, 
1953, 1958, 
1959, 1960, 
1961, 1962, 
1966, 1968, 
1977, 1978, 
1979, 1980, 
1981, 1983, 
1984, 1985, 
1989, 1990, 
1992, 1993, 
1994, 1995, 
1996, 2000, 

2001 

1951, 1957, 
1963, 1965, 
1969, 1972, 
1976, 1982, 
1986, 1987, 
1991, 1997 

2002 

Station Name State COOP # 
Andalusia AL 10252 
Anniston AL 10272 
Haleyville AL 13620 
Inverness FL 84289 

Jacksonville Intl AP FL 84358 
Moore Haven FL 85895 
Tallahassee FL 88758 

Athens GA 90435 
Eastman GA 92966 



the amplitude of the variability across frequencies 
within each calendar month.   

To generate data for a particular month and 
ENSO phase, we generate a white noise series 
with length equal to the number of days in the 
month, xt.  The spectrum of this white noise series, 
XfXf* is theoretically constant.  Yf is then produced 
by convolving the ensemble amplitude spectrum 
and the Fourier transform of the white noise 
series: 

            fff XHY =                        (2) 

The inverse Fourier transform of Yf, Yt, is a new 
time series with the same length as the month in 
question containing deviations (from average) of 
Tmin or DTR.  The generated series is checked for 
proper skewness and absence of negative DTR 
before data generation continues.  The model 
currently requires that the generated DTR is 
positive and than the skewness of both Tmin and 
DTR is within 0.1 of the mean observed skewness 
for the month in question.  If the generated 
sequence does not meet both of these 
requirements, a new white noise series is 
produced and the process is repeated.  The wet 
day and dry day mean values are then drawn from 
a normal distribution with mean and standard 
deviation determined from the observed data.  
Once a day is determined to be wet or dry 
according to the methodology described in Section 
3.1., the appropriate wet or dry day mean 
minimum temperature or DTR is added to each 
value comprising Yt.  We also compute the 
average trend for each calendar month and add it 
to the daily sequence to avoid discontinuities at 
the monthly boundaries. 
 
4. WEATHER GENERATOR EVALUATION 
 

We compare sequences generated by the 
spectral model with observed data to evaluate 
model performance.  We also compare our 
generated temperature data with that produced by 
a WGEN-type autoregressive (AR) model to place 
the differences in the context of weather 
generators.  The AR model used in this study is 
described by:                            
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where the left hand side of the equation 
represents the current day’s values, the vector 
with subscript i-1 refers to the previous day’s 
values, εi is a 2 × 1 vector of random N(0,1) 
variates, and A and B are 2 × 2 matrices 

determined from the observed lag-0 and lag-1 
cross-correlation matrices. The residuals produced 
by Equation 4 are then multiplied by the daily 
standard deviation and added to the daily mean.  
The daily means and standard deviations used for 
this purpose are derived by fitting three harmonics 
to the daily means and standard deviations for 
each day of the year (see Figure 3).  For this 
application, we use monthly station-specific 
parameterization for A and B as suggested by 
Schoof and Robeson (2003) and for consistency, 
the AR model uses the same precipitation 
occurrence and amount components as used with 
the spectral generator and separate parameter 
sets are determined for each ENSO phase.  
Parameter sets for both weather generators are 
derived from the same observed data.  For each 
weather generator, a 100-year series is generated 
for each ENSO phase and evaluated relative to 
the 54-year historical record.    
 
4.1. Precipitation occurrence 
 

The spectral weather generator successfully 
reproduces the mean number of wet days on 
annual (within 4 days) and monthly (within 2 days) 
timescales. Application of a t-test to the 
differences indicates that they are not statistically 
significant (at α=0.05) for any of the stations 
tested during any of the three ENSO phases.  On 
a monthly basis, the mean number of generated 
wet days is significantly different from observed (at 
α=0.05) only at Inverness, FL, during April of the 
warm ENSO phase and Jacksonville, FL during 
May of the cold ENSO phase.      

Stochastic precipitation models typically 
underestimate interannual variability in 
precipitation although it is unclear whether this 
result arises from inadequate statistical 
representation of the precipitation process or 
failure to capture interannual variability in the 
physical processes governing precipitation 
occurrence (Wilks 1999).  This variance 
underestimation problem is known as 
overdispersion and is defined as:                     
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The interannual variability within the model 
presented here is dependent only on two 
properties: the variance of the number of wet days 
and the variance of wet-day precipitation amounts 
(Gregory et al. 1993; Katz and Parlange 1998; 
Wilks 1999).  The weather generator presented 
here suffers from minor overdispersion in the 
number of wet days (Figure 2a).  The interannual 



variance of the number of wet days, however, is 
not always underestimated and underdispersion 
(overestimation of variance) occurs for some 
months and ENSO phases (Figure 2a).  Averaged 
over all stations and months, the overdispersion 
for the monthly number of wet days is 3.3%, 5.7%, 
and -1.1% for the cold, neutral, and warm ENSO 
phases, respectively.  The interannual variability in 
the number of wet days is significantly different 
from observed only at Inverness, FL during the 
neutral ENSO phase, although differences in the 
standard deviation of the number of annual wet 
days exist across stations and ENSO phases.   
Generated and observed monthly interannual 
variances of the number of wet days are only 
significant (according to an F-test with α=0.05) at 
Inverness, FL during August of the neutral ENSO 
phase.   

These results suggest that the weather 
generator adequately reproduces the mean 
number of annual and monthly wet days but 
slightly underestimates the interannual variability 
in the mean number of wet days during the cold 
and neutral ENSO phases and slightly 
overestimates the interannual variability during the 
warm ENSO phase.  Hence, we conclude that the 
observed precipitation occurrence structure is 
well-represented, but that weather generators may 
benefit from inclusion of additional parameters 
which influence low frequency variability, even 
within a particular ENSO phase.   
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Figure 2: Monthly variance overdispersion for a) 
number of wet days, and b) wet-day precipitation 
amount.  Points below the 1:1 line indicate 
underestimated variance (overdispersion), while 
those above the 1:1 indicate variance 
overestimation.   
 

4.2. Precipitation Amount 
 

On the daily timescale, the generated 
precipitation amounts exhibit strong agreement 
with observations.  Mean wet-day precipitation 
amounts computed over the entire year are within 
0.5 mm of observed values at all stations tested 
and for all three ENSO phases.  When computed 
for each month, differences between generated 
and observed wet-day precipitation amounts are 
slightly larger, but less than 3 mm for all stations, 
months, and ENSO phases.  Although these 
differences are large relative to those computed 
over the entire year, they are not statistically 
significant (based on a t-test with α=0.05) for any 
of the stations during any month or ENSO phase. 

In general, the mean wet-day amounts exhibit 
better agreement with observations than the 
variances of wet-day amounts.  The variance of 
wet-day precipitation amount computed using the 
entire year is significantly different from that 
observed (based on F-test with α=0.05) at two 
stations (Andalusia, AL during the neutral ENSO 
phase and Tallahassee during the cold and neutral 
ENSO phases).  Variances of monthly wet-day 
precipitation amounts are significantly different 
from those observed at Andalusia, AL (March and 
October of neutral ENSO years), Jacksonville, FL 
(October of neutral ENSO years), and Tallahassee 
(June and September of neutral ENSO years).  In 
each of these cases, the generated variance is 
less than the observed variance although variance 
overestimation (underdispersion) also occurs for 
some stations and months during each ENSO 
phase (Figure 2b).  As noted in Section 4.1, the 
interannual variability is dependent on the 
variability in the number of wet days and the 
variance of wet-day precipitation amounts.  As 
shown in Figure 2b, the variance of wet-day 
precipitation amounts exhibits greater agreement 
with observations than does the variance of the 
number of wet days.  Averaged over all months 
and stations, the variance overdispersion for wet-
day precipitation amounts is 0.7%, 3.7%, and 
0.6% for the cold, neutral, and warm ENSO 
phases respectively.  

The annual and monthly total precipitation 
amounts depend on both the wet-day amounts 
and the number of wet days.  Differences in the 
generated and observed mean annual 
precipitation amount range (across stations) from -
33.7 to 67.6 mm, -20.5 to 42.9 mm, and -40.1 to 
38.8 mm for the cold, neutral and warm ENSO 
phases, respectively and are not significantly 
different at any station during any ENSO phase 
(based on a t-test with α=0.05).  At the monthly 



timescale, agreement between observed and 
generated precipitation totals is slightly weaker, 
and the null hypothesis of equal monthly means is 
rejected (at α=0.05) for both September of the 
cold ENSO phase and April of the warm ENSO 
phase at Inverness, FL, due to both simulation of 
too many wet days and excessive precipitation 
amounts on those days.   
  
4.3. Minimum Temperature (Tmin) 
 

The annual mean daily minimum temperatures 
(Tmin) produced by both the spectral weather 
generator and the AR weather generator exhibit 
excellent agreement with observations.  Absolute 
differences between generated and observed 
annual mean daily Tmin range from 0.0 to 0.2°C for 
both the spectral and AR models and are not 
significantly different from zero at any of the 
stations tested during each ENSO phase.  When 
computed on a monthly basis, these absolute 
differences are larger, and range from 0.2 to 0.8°C 
and 0.4-1.5°C for the spectral and AR models, 
respectively.  The differences reported above for 
the spectral model are not statistically significant 
(based on a t-test with α=0.05) for any station, 
month, or ENSO phase.  Those for the AR model 
are not statistically significant during the cold and 
neutral ENSO phases with one exception 
(Inverness, FL during July of the cold ENSO 
phase).  However, multiple stations exhibit 
statistically significant differences in monthly mean 
values of daily Tmin for several months during the 
warm ENSO phase.  Further inspection of the 
observed and generated data (Figure 3) shows 
that the 3-harmonic fit fails to capture a spring 
spike in daily Tmin resulting in significant 
differences in March mean daily Tmin at five 
stations (Andalusia, Inverness, Jacksonville, 
Moore Haven, and Eastman).  Significant 
differences also occur during June (2 stations), 
July (2 stations), August (4 stations), and 
September (3 stations) due to a flattened seasonal 
cycle during these months during the warm ENSO 
phase (Figure 3).  No significant differences occur 
at the three northernmost stations (Haleyville, 
Anniston, and Athens).     

Both weather generators correctly reproduce 
the standard deviation of daily minimum 
temperatures at the annual timescale within 0.2°C.   
The spectral weather generator also correctly 
replicates the standard deviation of daily Tmin for 
each month.  The AR model has fewer statistically 
significant differences for the monthly standard 
deviation of mean Tmin than monthly mean Tmin, 

although the former are still significant for three 
stations (Anniston during neutral ENSO June, 
Inverness during cold phase June, neutral phase 
September, and warm phase June and 
September, and Moore Haven during neutral 
phase November and warm phase June, August, 
and September).  These differences do not appear 
to be due to poor characterization of the seasonal 
cycle by the harmonics used in the AR model 
formulation. 

In addition to the daily Tmin statistics presented 
above, we also consider statistics describing the 
distribution of the monthly mean Tmin.  The spectral 
weather generator correctly reproduces the mean 
of the monthly mean Tmin for each calendar month. 
Absolute differences in the monthly means are 
less than 1.2°C and insignificant in a statistical 
sense (based on a t-test with α=0.05).  As with the 
mean daily Tmin, mean monthly mean Tmin values 
produced by the AR model are significantly 
different from those observed (based on a t-test 
with α=0.05) for multiple stations.  As with the 
monthly means of the daily Tmin, absolute 
differences are as large as 1.5°C and the largest 
differences occur at southern stations during the 
warm ENSO phase.    

The interannual variance of Tmin was 
examined in terms of both the variance of the 
annual means and the variance of the means for 
each calendar month.  The former indicate that the 
year-to-year variations in annual mean Tmin are 
substantially smaller in the generated data than in 
the observations.  However, the interannual 
variability is quite small, so that in many cases 
statistical significance of the difference in 
observed and generated interannual variability is 
easily achieved.  At the monthly timescale, the 
interannual variability is considerably larger, and 
although the generated interannual variability is 
smaller than observed for most stations and 
ENSO phases, the differences are not statistically 
significant for any of the locations tested during 
any of the three ENSO phases (based on an F-
test with α=0.05).  Similar levels of interannual 
variability are produced by the AR model, although 
differences in interannual variability of monthly 
mean Tmin are found to be statistically significant at 
Inverness, FL during July and August of neutral 
ENSO years due to variance underestimation. 

Of particular importance for agricultural 
applications are temperature extremes, and freeze 
events, in particular.  Therefore, we examined the 
number of days in the observed record and in the 
generated series for which Tmin is at or below 
freezing (0°C).  As shown in Figure 4a, the 



spectral weather generator replicates the mean 
annual number of freeze events within 10 days, 
although differences are much smaller for most 
stations and ENSO phases (Figure 4a).  
Differences in the observed and generated 
number of freeze events are slightly larger for the 
AR generator (up to nearly 13 days, Figure 4a), 
and are statistically significant at α=0.05 at three 
stations (Andalusia during the cold ENSO phase, 
Anniston and Tallahassee during the neutral 
ENSO phase).  On a monthly basis, results from 
both weather generators agree with observations 
for months with more than about 6-7 freeze 
events.  For months with fewer freeze events, both 
approaches tend to slightly overestimate the 
number of freeze events (Figure 4).  Results from 
the spectral generator exhibit slightly better 
agreement with observations than the AR model 
during the neutral and warm ENSO phases.   

For some applications, it may be necessary for 
generated data to reproduce higher order 
statistics, such as skewness.  While weather 
generators utilizing Gaussian representation of 
temperatures will not produce skewed data 
(Harmel et al. 2002), Figure 5a confirms that the 
spectral model replicates the mean observed Tmin 
skewness better than the AR model, which rarely 
produces absolute skewness values greater than 
0.5.  Although the skewness values generated 
with the spectral model are more similar to 
observed skewness values, they are still lower 
than observed values and do not exhibit the same 
level of variability in skewness found in the 
observed data.  A weather generator based on 
resampling techniques introduced by Clark et al. 
(2004) produced similar results.      
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Figure 3: The seasonal cycle of Tmin at Inverness, 
FL.  Solid lines represent 15-day moving averages 
of the daily means.  Dashed lines represent the 3-
harmonic fit used to characterize the seasonal 
cycle in the AR model.   
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Figure 4: Mean number of a) annual and b) 
monthly freeze events across all stations for each 
ENSO phase.  Circles (ο) represent the spectral 
weather generator while pluses (+) represent the 
autoregressive weather generator.   
 
4.4. Diurnal Temperature Range (DTR) 
 

The spectral weather generator adequately 
replicates the mean daily DTR over the entire year 
and individual calendar months.  At the annual 
timescale, differences between observed and 
generated mean daily DTR are less than 0.1°C, 
while monthly differences are slightly larger, but 
not statistically significant (at α=0.05), ranging 
from 0.2-0.6°C.  Annual mean daily DTR produced 
by the Richardson weather generator also exhibits 
good agreement with observations.   

Differences in monthly means range from 0.3-
0.8°C and are statistically significant for a single 
month and ENSO phase at six stations (Anniston, 
Tallahassee, and Eastman during August of the 
cold ENSO phase, Haleyville during March of the 
neutral ENSO phase, Moore Haven during 
September of the neutral ENSO phase, and 
Athens during December of the neutral ENSO 
phase).  The standard deviation of daily DTR from 
the spectral weather generator also exhibits 
excellent agreement with observations, while 
statistically significant differences occur at two 
stations for a single month (Moore Haven during 
August of the warm ENSO phase and Eastman 
during August of the cold ENSO phase) for the AR 
model. 

As with Tmin, we also consider statistics 
describing the distribution of the monthly mean 
DTR.  At the monthly timescale, both weather 
generators produce mean monthly mean DTR 



values that are similar to those observed, although 
DTR values produced by the AR weather 
generator are significantly different from those 
observed for a single station and ENSO phase 
(Athens, GA during neutral ENSO December).   

The interannual variability of annual mean 
DTR exhibits similar behavior to that described for 
Tmin and both weather generators underestimate 
the interannual variance which is usually less than 
1°C.  Interannual variability of the monthly means 
is better captured by the spectral weather 
generator, and although interannual variability is 
still slightly underestimated, application of an F-
test with α=0.05 does not result in a rejection of 
the null hypothesis that generated and observed 
interannual variances are equal for any station, 
month, or ENSO phase.  For some stations and 
ENSO phases, the AR model produces monthly 
interannual variances that are only 1/3 to 1/2 the 
size of observed interannual variances and are 
thus deemed statistically significant by an F-test 
with α=0.05.     

Previous studies have indicated that AR 
weather generators sometimes produce negative 
DTR (i.e., Tmin > Tmax).  To investigate this within 
the context of our study, we counted the 
occurrences of this fundamental error within a 
100-year simulation.  The results varied widely, 
ranging from only 4 occurrences (at Moore Haven, 
FL during the cold ENSO phase) to 177 
occurrences (at Anniston, AL during the neutral 
ENSO phase).  These errors are not present in the 
spectral weather generator, due to the model 
formulation characteristics.    
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Figure 5: Mean monthly skewness of daily a) Tmin 
and b) DTR across all stations for each to ENSO 
phase.   Circles (ο) represent the spectral weather 
generator while pluses (+) represent the 
autoregressive weather generator. 

5. SUMMARY AND CONCLUSIONS 
 

We have combined existing methods for 
generating daily precipitation with an innovative 
spectral approach to generating daily minimum air 
temperature and diurnal temperature range.  The 
spectral weather generator was applied to data 
from nine stations in the southeast USA and the 
generated data was compared to both observed 
data and data generated by a variant of the 
commonly used autoregressive weather 
generator. 

Evaluation of the generated precipitation data 
revealed that both the mean number of wet days 
and the mean precipitation amount were 
adequately simulated across a range of timescales 
but that variability was generally underestimated, 
in agreement with previous studies.  These results 
suggest that, even within a particular ENSO 
phase, weather generators may benefit from 
inclusions of parameters which can better 
characterize low frequency variability.  

Our analysis of temperatures generated by the 
spectral and autoregressive weather generators 
identified several advantages of using spectral 
method for generating daily temperatures.  The 
spectral generator resulted in fewer rejections of 
null hypotheses concerning equality of means and 
variances of Tmin and DTR across multiple 
timescales and also replicated observed skewness 
and freeze event occurrence on both annual and 
monthly timescales better than the AR model, 
particularly for the southernmost stations.  This 
finding has particular relevance for agricultural 
modeling applications where freeze events are 
critical for many types of crops.  Lastly, the 
spectral generator alleviates the problem of 
simulating negative DTR, a fundamental 
simulation error.  The implications of these 
findings will vary depending on the particular 
weather generator application, but our findings 
suggest that the spectral weather generator 
produces temperatures that are more realistic than 
those produced by the autoregressive approach 
and should therefore be more appropriate for most 
weather generator applications.            
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