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Abstract  

 
Using existing data sets of passive microwave spaceborne soil moisture retrievals, 

streamflow and precipitation for 26 basins in the United States Southern Great Plains, a 

5-year analysis is performed to quantify the value of soil moisture retrievals derived from 

the Tropical Rainfall Mission (TRMM) Microwave Imager (TMI) X-band (10.7 GHz) 

radiometer for forecasting storm event-scale runoff ratios.  The predictive ability of 

spaceborne soil moisture estimates is objectively compared to that obtainable using only 

available rainfall observations and the antecedent precipitation index (API).  The 

assimilation of spaceborne observations into an API soil moisture proxy is demonstrated 

to add marginal value to the forecasting of land surface response to precipitation.      

 

1. INTRODUCTION  
 

Within small and intermediate-scale basins, knowledge of antecedent soil moisture 

conditions provides a key source of skill for short-term (1- to 3-day) streamflow 

forecasting.  Operational attempts to exploit this skill are usually hampered by a lack of 

reliable soil moisture information.  In the near future, such information will be 

operationally available from remote sensing.  Previous work examining the value of 

observed soil moisture for streamflow forecasting have considered observations derived 

from spaceborne radar (Pauwels et al. 2002; Francois et al. 2003), airborne passive 

(Goodrich et al. 1994; Jacobs et al. 2003), and in situ sensors (Aubert et al. 2003).  Less 

work has been focused on soil moisture data estimates derived from passive spaceborne 

radiometers.  Utilizing passive spaceborne observations for surface soil moisture 

retrievals presents a unique set of advantages (e.g. more frequent and spatially extensive 

observations than spaceborne radar, airborne passive, or ground-based observations and 

generally higher accuracy than spaceborne radar) and disadvantages (e.g. relatively poor 

spatial resolution). Examining the effect of these attributes on streamflow forecasting is 

further motivated by the expected windfall of global, passive-based soil moisture data 

expected from the upcoming Soil Moisture and Ocean Salinity (SMOS) (Kerr et al. 

2001), Hydrospheric States (Hydros) (Entekhabi et al. 2004) and Conically Scanning 

Microwave Imager/Sounder (CMIS) (Chauban, 2003) spaceborne missions. 
  

A critical benchmark for evaluating the value of such observations for hydrologic 

forecasting is whether their inclusion into a modeling system leads to marginal 

improvements above and beyond what is possible using existing observational resources.  

Within the context of rainfall-runoff modeling, the issue is whether remotely-sense soil 

moisture provides information concerning antecedent soil moisture that is more valuable 
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for hydrologic forecasting than soil moisture proxies that are commonly available from 

observations of antecedent precipitation and simple soil moisture modeling. 

       

Using long-term daily rainfall/runoff data sets collected as part of the MOdel 

Parameterization EXperiment (MOPEX), satellite-based precipitation observations from 

the Global Precipitation Climatology Project (GPCP), and nearly five years of remotely-

sensed soil moisture derived from the 10.7-GHz band of the Tropical Rainfall Mission 

(TRMM) Microwave Image (TMI), this analysis examines the value of simple 

precipitation-based soil moisture proxies  - derived with and without the assimilation of 

remotely sensed soil moisture observations - for the short-term (1-3 day) forecasting of 

storm event-scale runoff ratios (runoff/precipitation).  The goal will be to definitely 

isolate the marginal value (if any) of spaceborne soil moisture retrievals for forecasting 

land surface response to precipitation. 
 

2. DATA 

 
MOPEX data sets provide high-quality, daily observations of streamflow, air 

temperature, and precipitation for a large number of intermediate-scale (500 to 10000 

km
2
) basins in the United States  (Schaake et al. 2001).  Prior to their inclusion into the 

MOPEX, individual basins are screened according to the quality (and density) of rain 

gauges observations in the basin and degree of anthropogenic diversion and 

impoundment.  All MOPEX basins within a box extending from -99 to -90 degrees 

longitude and south of 39 degrees latitude (the maximum latitude of TRMM 

observations) are considered (Table 1).  To the west of -99 degrees longitude, runoff 

magnitudes are generally too low (1 to 2% of annual rainfall) to obtain an adequate 

sample of storm events with significant streamflow responses, and the predominance of 

forested land cover east of -90 degrees latitude greatly complicates the remote retrieval of 

soil moisture.  The retrieval of surface soil moisture observations from 10.7 GHz TMI 

observations is described in detail by Bindlish et al. (2003). Retrievals have a -3dB 

spatial resolution of 38
2 

km
2
.  Due to TRMM orbital characteristics, overpass times vary, 

but retrievals are generally available on a daily basis.  Satellite-based precipitation 

products are derived from one latitude/longitude degree daily (1DD) Global Precipitation 

Climatology Project (GPCP) product based on infrared retrievals from the Television 

Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) and the 

Geostationary Operational Environmental Satellite (GOES) and passive microwave 

measurements from SSM/I (Huffman et al. 2001).   
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Table 1.  Location, size, and long-term runoff ratios for basins used in the analysis. 
 

 
 

 

3. SOIL MOISTURE PROXIES  
 

Three different soil moisture proxies are calculated: the antecedent precipitation index 

(API), TMI-based surface soil moistures estimates (θTMI), and API updated with daily 

θTMI observations using a Kalman filter (APITMI).  API for day i is defined as 

 

APIi = γAPIi + Pi                      (1) 

  

where Pi is precipitation and γ is the loss coefficient.  Both rain gauge data and satellite-

based rainfall products will be used to estimate P.   

 

Kalman filtering is used to update API predictions from (1) with remotely-sensed surface 

soil moisture from TMI.  The relationship between API and TMI-derived surface soil 

moisture (θTMI), is derived by fitting a linear least-squares regression line (with slope b 

and intercept a) to daily scatter plots of each quantity.  Due to the known sensitivity of 

this relationship to vegetation amount, separate fits are individually derived for each 

basin listed in Table 1.  Using this measurement operator, the state update equation for 

the Kalman filter becomes 

 

API
+

TMI,i= API
-
TMI,i, + Ki(θTMI,i - a - b API

-
TMI,i )    (2) 

 

where K is the Kalman gain 
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Ki = b Ti
-
/(b

2
 Ti

-
+ R),        (3) 

 

T the dynamic error in forecasted API and R the error in θTMI retrievals.  Between daily 

updates, the model state API
+

TMI is temporally updated using (1).  Forecast error T is 

propagated in time using 

 

Ti
-
= γ 2 Ti-1

+
 + Q        (4)  

 

and then adjusted at measurement times via 

 

Ti
+
 = (1 - b Ki) Ti

-        
(5) 

 

The filter requires that two error parameters, Q and R, be set equal to the variance of 

daily error in API calculations and θTMI retrievals, respectively.  Based on validation 

results for θTMI in Bindlish et al. (2003) and the known sensitivity of R to vegetation 

amount, R is assumed to be (2%)
2
 volumetric for basins in the lightly vegetated western 

portion of the region (west of -97 degrees latitude), (4%)
2
 for heavily vegetated eastern 

portions of the basin (east of -92 degree latitude) and (3%)
2
 for basins located in between.  

Following Dee (1995), modeling error is calculated by tuning Q such that normalized 

filter innovations - (θTMI,i - (a+b API
-
TMI,i))

2
/(b

2
Ti

-
 + R) - have a temporal mean of one.  

During tuning, all basins are lumped together to obtain a single calibrated Q value. 

 

4. APPROACH  
 

For each of the 26 basins described in Table 1, API, θTMI and APITMI were calculated on a 

daily basis between December 1997 and September 2002.  Each moisture proxy was then 

used to estimate moisture levels on the day prior to the start of a storm event.  The value 

of various soil moisture proxies for runoff forecasting were intercompared based on the 

Spearman-rank correlation coefficient (SR) calculated between their pre-storm value and 

the subsequent time-integrated runoff ratio (total streamflow/total rainfall) observed 

during the event. A storm event is initiated when at least 2 mm of rainfall is recorded on 

single day and lasts for the next 7 days or until a day of above-threshold rainfall is 

recorded following a day of below-threshold rainfall.  To limit the impact of convoluted 

streamflow responses from closely following storms, only events lasting 5 days or more 

were considered and any event proceeded by streamflow greater than 2 mm day
-1

 was 

deemed too close to the proceeding event and dropped from the analysis.  To minimize 

the impact of frozen precipitation, events beginning on days in which the average of 

minimum and maximum temperature was below 0 C were also masked.  For the 

remaining events, rainfall and streamflow were summed over individual events and used 

to calculate a storm-scale runoff ratio (total streamflow/total precipitation) for each event.  

Since base flow rates are generally low in the region, no base flow separation was 

performed. 
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5. RESULTS 
 

Figure 1 shows time series of θTMI, API and APITMI proxies for a single basin (USGS 

number 07243500) between July 2000 and June 2001 and, for storms between December 

1997 and September 2002, scatter-plots of pre-storm values of each proxy versus 

subsequent storm-scale runoff ratios.  All three proxies demonstrate a positive and 

statistically significant Spearman-rank correlation coefficient (SR) between their pre-

storm values and subsequent storm-scale runoff ratios.  A higher correlation coefficient is 

obtained for the merged APITMI proxy (Figure 1f) than for either θTMI or API in isolation 

(Figures 1b and 1d).  Figure 2a repeats the analysis for all 26 basins in Table 1 and plots 

SR values calculated between the pre-storm value of proxies and subsequent event-scale 

runoff ratios.  SR values for θTMI and API are generally comparable with correlation 

levels for θTMI exhibiting more basin-to-basin variability. However, the merger of θTMI 

into API to form APITMI increases the observed correlation for all 26 basins (Figure 2a).     

 
Figure 1.   For a single basin (USGS number 07243500), 1-year time series of soil 

moisture proxies and scatter plots (for all five years) of proxies on the day prior to 

precipitation events versus subsequent storm event-scale runoff ratios. Each circle 

represents a separate event.  Spearman-rank correlation coefficients (SR) are given for 

each scatter plot. 
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Results in Figure 2a reflect storm events of all magnitudes.  Modifying the approach to 

examine proxy skill for only large storm events (total magnitudes above 75 mm) does not 

qualitatively change results.  When limiting the analysis to storms above 75 mm, the 

inclusion of TMI soil moisture observations improves the forecasting of runoff ratio in 21 

out of 26 basins (as opposed to 26 out of 26 basins for all storm magnitudes) and results 

in an average increase in SR of about 0.15 (not shown).  Unfortunately, the length of the 

TMI soil moisture data set (5 years) prevents the adequate sampling of larger storm 

thresholds.  Consequently, it is not possible to definitely isolate marginal skill for storm-

events associated with even modest flood return intervals (2 to 5 years).   

 

 

  
 

Figure 2.  a) Comparison of SR calculated between pre-storm values of soil moisture 

proxies versus storm event-scale runoff ratios using gauge-based precipitation and API, 

θTMI and APITMI proxies. Basin numbers on the x-axis correspond to the first column of 

Table 1. b) Same as a), except proxies are gauged-based API (API(Gauge)), satellite-

based API (API(GPCP)), and the merged proxy based on the assimilation of θTMI into 

API(GPCP) (APITMI(GPCP)). 

 

6. IMPACT OF SATELLITE-BASED PRECIPITATION 
 

Only basins with sufficiently dense ground-based gauge data were included into the 

MOPEX data set.  Consequently the reliability of daily rainfall accumulations used to 

derive API values in Figures 1 and 2 is very high and not globally representative of 

typical rainfall accuracies.  The results in Figure 2b are based on modifying the analysis 

in Figure 2a by using satellite-based GPCP-1DD daily rainfall estimates instead of rain 

gauge data to estimate P in (1).  Switching between gauge- and satellite-based 

precipitation products leads to a reduction in the ability of API to forecast runoff-ratios 

(Figure 2b).  However, when TMI observations are assimilated into API(GPCP) to form 
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APITMI(GPCP), the increase in SR is large enough to fully compensate for the deficiencies 

of the GPCP-1DD precipitation forcing (Figure 2b).  That is, an appropriate combination 

of satellite-based precipitation and TMI soil moisture observations provides as much (or 

more) land surface information than high quality rain gauge-based API predictions 

lacking any soil moisture assimilation.  

 

7. CONCLUSIONS  
 

Relative to the skill obtainable through consideration of only gauge-based antecedent 

precipitation, the assimilation of TMI-based soil moisture estimates (θTMI) into a simple 

API model leads to an enhanced ability to predict next-day storm runoff ratios (i.e. an 

enhanced Spearman-rank correlation between soil moisture proxies and runoff ratios) for 

all twenty-six of the basins listed in Table 1 (Figure 2a).  The marginal value of TMI 

observations is enhanced when lower quality, but more readily available, satellite-based 

precipitation data sets are used to drive API predictions.  In fact, Kalman filter-based 

assimilation of θTMI into an API model driven by satellite-based GPCP precipitation data 

leads to runoff-ratio forecasting skill that is slightly better than API models driven by 

high-quality ground-based gauge data (Figure 2b).  That is, for this particular application, 

TMI-based soil moisture estimates are capable of compensating for the relative 

deficiency of satellite-based precipitation products versus higher-quality (but less readily 

available) rain gauge observations. 

 

It is also worth noting that, relative to the 10.7 GHz TMI observations utilized here, 

future spaceborne surface soil moisture missions (i.e.. SMOS and Hydros) will be based 

on lower frequency observations capable of improved retrieval accuracy and deeper soil 

sampling volumes.  These improvements will almost certainly enhance the value of 

remotely sensed surface soil moisture products for hydrologic applications including 

flood forecasting. 
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