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1. INTRODUCTION 
 
Radiative transfer models are an integral part of 
remote sensing and radiance assimilation systems 
and are also used to support instrument design 
trades and performance analysis.  To extend 
beyond ongoing research efforts and be effective in 
the operational environment a radiative transfer 
model must have sufficient radiometric accuracy for 
the problem at hand while also possessing a high 
degree of computational efficiency.  However, 
computational speed often comes at the expense of 
overall radiometric accuracy or limitations in the 
ability to adapt the model to changes in sensor or 
mission parameters.  A further limitation of models 
designed for operational use is that they tend to be 
based on the parameterization of atmospheric 
optical depth.  In this case the radiative transfer no 
longer obeys Beer’s law and is not amenable to 
multiple scattering atmospheres.  Also, for many 
types of parameterizations it is inefficient to 
calculate the radiance Jacobians (the change in 
radiance with respect to a geophysical quantity) 
necessary for retrieval calculations, and the overall 
accuracy depends strongly on the choice of 
predictors. 
 
In order to address these concerns we have set 
some criteria that must be met for the development 
of a robust, computationally efficient model for 
generic remote sensing applications.  Most 
importantly, the model must be applicable to a wide 
range of remote sensing problems, with only minor 
configuration changes: down-looking (satellite 
sensors), up-looking (ground-based sensors), 
aircraft or balloon (variable viewing and altitude 
ranges), limb or line-of-sight measurements, and 
the inverse adjoint for radiance assimilation 
algorithms.  In order to make the process of multi-
sensor data fusion all the more tractable, the ideal 
model must have consistent physics throughout all 
spectral ranges, from the microwave through the 
ultraviolet, and be applicable to both narrow-band 
and wide-band applications.  It will also work 
equally well in scattering and non-scattering 
atmospheres and be easy to couple with multiple-
scattering and/or atmospheric polarization models.  
Both accuracy and execution speed are important 
parameters and the ideal model would allow a 
trade-off depending on the specifics of the problem.  

Such a trade-off should allow for both highly accurate 
calculations of total radiance as well as high accuracy 
for each of the individual layers in the calculation.  (Thus 
the model would be suitable for both “atmospheric 
correction” and radiance inversion problems).  Finally, 
the algorithm should be capable of calculating the 
radiance Jacobians (derivative of radiance with respect 
to geophysical parameters) necessary to perform the 
radiance inversion, and to consider any number of 
gases as having fixed or variable (retrievable) amounts.  
The Optimal Spectral Sampling (OSS) approach meets 
these criteria and directly addresses the need for highly 
accurate real-time monochromatic radiative transfer 
calculations (including the Jacobians) for any class of 
multispectral, hyperspectral, or ultraspectral sensor.  
 
The Optimal Spectral Sampling (OSS) method (e.g. 
Moncet et al., 2004) is a fast and accurate transmittance 
parameterization technique. The OSS method offers a 
simple and practical solution to the problem of extending 
the Exponential Sum Fitting of Transmittances (ESFT) 
(Wiscombe, 1977) and k-distribution techniques (e.g. 
Goody et al, 1989) to vertically inhomogeneous 
atmospheres with overlapping absorbing species. The 
multi-dimensional search for absorption coefficients (k’s) 
in a multi-layered atmosphere attempted by several 
authors (e.g. Armbruster and Fischer, 1996) is greatly 
simplified by operating in the one-dimensional frequency 
domain. In the OSS concept (US Patent #6,584,405), 
the parameterization process reduces to searching for a 
set of wavenumbers (nodes) and associated weights 
such that spectrally integrated radiances (or 
transmittances) are well approximated by a linear 
combination of monochromatic radiances computed at 
the selected nodes, 
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Like current transmittance parameterizations employed 
operationally in retrieval and radiance assimilation 
systems, the OSS method requires a globally 
representative set of atmospheric profiles for training. As 
an example of this fitting, consider the spectrum 
measured by a nadir-viewing spacecraft sensor (shown 
in Figure 1).  The left panels of the figure show the 
spectrum as a function of total optical depth (top line) 
and decomposed by different molecular species at 
different levels of the atmosphere.  The vertical lines 
give an example of the node locations selected by OSS 
for a channel encompassing this spectral range.  The 
top panel is for a radiometric brightness temperature 
threshold of 0.05K, while the bottom panel is for 0.01K.  
The right panels show the overall top-of- atmosphere 
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brightness temperature for a calculation in this 
spectral region.  The upper panels are for a lower 

radiometric threshold and thus require fewer points to 
minimize the error with the monochromatic calculation. 

Figure 1:  Example of OSS node selection for a region of the mid-infrared spectrum.  The left panels indicate the 
selected nodes relative to the optical depth spectrum, while the panels on the right give selected nodes as a 
function of total (top-of-atmosphere) brightness temperature.  The thin vertical lines represent the locations of 
selected nodes. 

 
Initially, we have concentrated on trading and 
optimizing techniques for selecting the nodes and 
weights for a single channel, in non-scattering 
atmospheres (e.g. Moncet and Uymin, 2003). The 
microwave and infrared models produced in this first 
phase of development already offer significant speed 
and accuracy advantages over current operational 
radiative transfer (RT) models (Weng et al., 2005). 
OSS models are currently used in the NPOESS/CrIS 
and CMIS EDR algorithms (Moncet et al., 2004, 2001) 
and have been integrated in the Joint Center for 
Satellite Data Assimilation (JCSDA) Community RT 
Model (CRTM) model (van Delst et al., 2005.), a joint 
NOAA/AER effort. These models are currently being 
considered for operational use in the National Center 
for Environmental Prediction (NCEP) assimilation 
process. In addition, a version of OSS is currently 
under development for direct inclusion into the 
MODTRAN model, as an alternative to current band 
models. As part of transitioning the OSS technology to 
NCEP the OPTRAN and OSS models have been 

extensively compared at NOAA. While the OSS model 
is more accurate than OPTRAN for all the operational 
instruments considered (e.g. Figure 2) , its speed is 
about 8 times faster for the high spectral resolution 
AIRS instrument (e.g. Weng et al., 2005). Recent 
research has focused on extending the current 
training to scattering atmospheres and on training 
models for high spectral resolution instruments by 
considering all the channels simultaneously 
(generalized training). Some key results of this 
research are presented below. 
 
2. GENERALIZED OSS TRAINING 
 
In the first phase of development of OSS we have 
focused on single channel (localized) training. This 
form of training leads to an optimal (in terms of the 
number of nodes used to achieve a prescribed 
accuracy) node selection for the individual channels. 
  

  



When the RT model operates on the same set of 
channels, it is advantageous to consider all the 
channels at once in the training. In the generalized 
“multi-channel” training one exploits the correlations in 
the spectrum in an attempt to maximize the number of 
nodes that are common to several channels and 
thereby reduce the total number of nodes used to 
describe the channel set. 
 
 

 
Figure 2: Example of AIRS model validation. The top 
plot shows the difference between actual observation 
and line-by-line calculations for a selected RAOB at 
ARM Tropical Western Pacific site. The bottom plot 
shows difference between and OSS and LBLRTM 
line-by-line calculations (note that the scale has been 
blown up by a factor 10) 
 
 
Figure 3 shows the correlation matrix for the 645-2690 
cm-1 domain (AIRS instrument bandwidth).  
 
Two methods are currently being used for the multi-
channel training. The first method is a direct extension 
of the single channel selection approach in which one 

keeps on adding nodes until the rms difference 
between exact and approximate radiances fall below a 
given threshold for all individual channels within a set 
of N (not necessarily contiguous) channels. The 
second method is a clustering type technique. Starting 
from the complete set of candidate nodes for the 
group of channels, this method successively reduces 
the number of nodes by merging together nodes 
containing highly correlated information. The 
correlation radius is a function of the desired accuracy. 
The latter approach is faster than the first method and 
may handle much wider spectral domains. However 
more work is required to make its selection optimal. 
 
Examples of application of generalized clear-sky 
training are shown in Table 1. For 1cm-1 wide boxcar 
functions, the gains in speed (and memory 
requirements) over the single channel approach are 
as large as 10-20 (for AIRS our current gain estimate 
is ~7, which brings the average number of nodes per 
channel from ~2 to ~0.3). In cloudy skies, spectral 
variations in cloud/aerosols optical properties tend to 
reduce the large-scale correlations and the anticipated 
gain in performance is smaller. 
 
Note that there is no attempt to deal with correlations 
at the channel level. This aspect is implicitly 
addressed in the OSS multi-channel training. For 
instance, if two channels are “perfectly” (i.e. within 
model accuracy) correlated, they will be attributed the 
same nodes and the time spent performing the 
computation for the two channels will be half that 
required for performing the same computation with our 
original approach. There is little to be gained by 
training the model on spectra compressed using PCA 
or other linear radiance transformation. However, if 
desired, such transformations can be performed in the 
model (with no penalty on the computational efficiency) 
by simply modifying the OSS weights. 

 

 
Figure 3: Inter-nodal correlation for the 645-2690 cm-1 domain. The figure shows the spectral position of the 
nodes which are within a correlation radius of 0.01 of any given node in the spectral domain. 



Table 1: Average number of selected nodes per channel for 1 cm-1 wide boxcars, with single and multi-channel 
training. 
 

Interval 
(cm-1) 

Interval width 
(cm-1) 

# nodes 
(single channel approach) 

Gain  
(multi-channel approach) 

645-675 30 286 9 

780-820 40 141 6 

645-745 100 1047 20 

780-880 100 248 10 

780-980 200 478 16 

 
 
3. GENERALIZED CLOUDY TRAINING 
 
The main challenge with the generalized training is 
coming up with the proper methodology for handling 
of the slowly varying spectral functions (cloud and/or 
surface optical properties) across wide intervals. In 
this case, one cannot simply extend the data set to 
include a mixture of clear and cloudy scenes and train 
the model as it is done for clear-sky applications. 
Because of the large magnitude of their impact on the 
radiance, clouds tend to drive the selection at the 
beginning of the process. The presence of clouds 
tends to smear the spectral features in the TOA 
radiances and makes the radiance spectra easier to fit, 
which results in a degraded clear-sky performance. 
This problem may be partially circumvented by 
separating clear and cloudy scenes and minimizing 
the rms errors separately for the two sets. However, it 
is our experience that the solution remains overly 
sensitive to the range of cloud optical depths used to 
in the training scenes, an indication that appropriate 
physical constraints are lacking. 
 
The preferred training approach (used as a 
benchmark in our future work) follows a two step 
procedure. In the first step, we apply the generalized 
clear-sky training described in the previous section. In 
the second step, the same selection algorithm 
operates on an initial set of nodes obtained by 
redistributing the nodes selected in the first step at 
regular frequency intervals within the specified domain. 
In this operation, the original wavenumber information 
associated with each node is lost. The monochromatic 
radiances at the newly assigned νj‘s (corresponding to 
the new frequency grid) are used to predict the impact 
of the slowly varying functions across the entire 
domain.  
 
The physical basis of the approach is illustrated in 
Figure 4.  In OSS, the same node i represents a 
number of “micro-intervals” (denoted by the index ik) 
with same absorption properties. The OSS weights 
can be interpreted as the sum of the widths ∆νik of 
these micro-intervals divided by the total width of the 
domain. In the absence of clouds/aerosols, the 
radiances in the micro-intervals associated with the 
same index i are identical. In the example shown in 
Figure 4, the contribution of the cloud to the radiance 
is linear in wavenumber. In this case, the cloudy 

radiances in the micro-intervals ik can be predicted 
from the radiance values computed at two arbitrarily 
selected wavenumbers ν1 and ν2 within the domain. 
The expression for the average radiance in any 
channel within the domain is simply obtained by 
summing up the contributions of all the micro-intervals 
for all nodes, 
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The only difference between Equations (2) and (1) 
(aside from the fact that some nodes have been 
duplicated through the cloudy training process) is the 
introduction in (2) of an extra frequency index for the 
monochromatic radiance calculations. The selection 
scheme does not duplicate a node if 1) the molecular 
absorption is so strong that clouds do not affect the 
radiances or 2) the impact of spectral variations in 
cloud properties over the domain spanned by the 
micro-regions it represents is negligible.  
 
The above method has the advantage that it is robust 
and stable with respect to the choice of training 
scenes. It also guarantees by construction that the 
initial clear-sky solution remains intact. Note that for 
the selection process to converge, it is important to 
impose the following constraint on the weights, 
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The applicability of the method is not limited to the 
linear case. For more complex functions, some nodes 
may be tripled, quadrupled…etc, depending on the 
degree of the polynomial that fits the cloudy radiances 
over wider intervals. 
 
Figure 5 shows an example of application of the 
generalized cloudy training to AIRS. Only the first 
1262 channels were considered. In this case, 
cloud/aerosols optical properties were modeled by 
starting with randomly generated piecewise linear 
functions (20 cm-1 segments) and by fitting a 
polynomial through the hinge points to smooth the 



functions. The loose constraints on the spectral slope 
and change of slope at the hinge points were derived 
from realistic cloud/aerosol absorption spectra and 
correspond to a worst case scenario. This particular 
training set was designed to accommodate a broad 
range of ground-based and airborne applications. 
Note that in Figure 5 there is a tendency for the 
performance to improve as clouds become more 

opaque, a desirable property of the approach. For this 
case, the average number of nodes per channel is 
0.82 (0.59 for clear-sky selection) compared 1.98 with 
the current single channel training, which represents a 
gain of 2.4 (3.4) in model speed. An AIRS model is 
currently being trained using more realistic water/ice 
cloud properties. In this case, higher computational 
gains may be expected. 

 
 

                    
 
Figure 4: Example of clear-sky (1st step) node selection (dashed lines) for an arbitrary spectral domain 
encompassing a single broadband channel or multiple high-resolution channels. The 4 other spectral sub-
intervals represented by the node i=2 are indicated by the solid vertical lines. Clear sky radiances are the same in 
all the 5 sub-intervals. The impact of clouds on the radiances for this node (linear case) is indicated by the upper 
dashed line. 
 
4. OSS VALIDATION IN SCATTERING 
ATMOSPHERES 
 
The OSS method is by construction amenable to the 
treatment of radiative transfer in scattering 
atmospheres. However, one has yet to devise an 
approach for performing the training in such 
conditions. There are two aspects of this problem that 
must be considered separately. The first question is 
how one should train the OSS model for a single 
narrow channel, when cloud/aerosol optical properties 
do not vary spectrally within the channel, and the 
second issue relates to the handling of the spectral 
variations of cloud properties across a wide band 
channel (or, for generalized training – see previous 
section, across multiple channels). The first question 
is addressed in this section. Our effort has initially 
focused on the thermal regime. 
The effect of introducing scatterers is to increase the 
photons path lengths within the atmospheric layers 
below the cloud top. As long as cloud properties do 
not vary across the channel, there is a priori no need 
to use a scattering model in order to perform the 
training. Clear scenes constructed by using a wide 
enough range of path lengths within appropriately 
selected layers should be adequate.  
 

The first step has been to validate an OSS model 
trained with our current clear-sky training data set 
(without any perturbation in the layer air masses) over 
the full range of cloud/aerosol optical depths and 
single scatter albedos. The particular model used in 
this study was trained for 1 cm-1 boxcar functions with 
a nominal accuracy of 0.05 K. The reference 
calculations were produced using LBLRTM (Clough et 
al., 1992) combined with the CHARTS (Moncet and 
Clough, 1997) adding-doubling RT model. Figure 1 
shows examples of errors obtained with low and high 
single layer clouds. It is apparent from this figure that 
the current model behaves very well in the thermal 
regime. For single scatter albedos up to 0.95, the 
cloudy performance is similar to the clear-sky 
performance and radiance errors are within the 
tolerance of the model. There is a sudden increase in 
the error when the cloud single scatter albedos 
approaches 1, which becomes apparent only at high 
optical depths (50 or greater). Even in this case, the 
error relative to line-by-line calculations is within 
~0.2K. These preliminary results are quite 
encouraging. Some ongoing effort is aimed at 
improving the performance in highly reflective 
situations and modifying the training to accommodate 
the solar regime. 
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Figure 5: OSS model accuracy in multi-layer cloudy (purely absorbing case) atmospheres. The upper left plot 
represent the rms errors in the clear-sky based on 48 profiles from the UMBC standard data set. The remaining 
plots correspond to different ranges of cloud optical depth in 3 atmospheric layers (low, medium, high). The range 
of optical depth (OD) corresponding to each layer is indicated by the 3 indices at the top of each plot, the lower 
layer being represented by the 1st index. The code used is: 0 = clear, 1= OD < 0.5, 2= OD <1, 3= OD < 2, and 4= 
OD > 2. 
 



 
Figure 6: OSS modeling errors for UMBC profile #1 (Nadir viewing) with low (top pressure = 800mb) and high 
(top pressure = 150mb) clouds. The results shown in this figure correspond to cloud optical depths of 10 (left) 
and 100 (right) and single scatter albedos ranging from 0.9 to 1. Clear-sky training was used.  
 
 
5. SUMMARY 
 
The current development of OSS addresses 
applications to scattering atmospheres and 
generalized multi-channel training. We have shown 
that models produced with the current clear-sky 
training should provide satisfactory results in cloudy 
skies in the thermal regime (both microwave and 
infrared). Until the cloudy training is refined, some 
caution should be exercised when using those models 
in highly reflective clouds and at large viewing angles. 
A second important development is the generalization 
of the training to multiple channels. Speed gains over 
the current approach of up to 10-20 (depending on the 
instrument) may be anticipated when training OSS to 
simultaneously fit radiances/transmittances over the 
entire set or a subset of high resolution channels. The 
effect of clouds/aerosols is to reduce the large scale 

correlations. For cloudy radiances the minimum gain 
(i.e. worst case) is around 2-3 for AIRS. As part of this 
effort we also introduced a new approach for handling 
spectral variations in cloud/surface optical properties 
in the training. This approach clearly distinguishes 
between the application of the OSS formalism for 
modeling the gaseous transmittance and its extension 
to radiance modeling for capturing the slowly varying 
spectral functions across wide spectral domains. The 
robustness of the training is key requirement for 
providing unsupervised training capabilities and for 
minimizing model validation work. Future work 
includes refining the OSS training in scattering 
atmospheres, both in the thermal and solar regimes, 
and improving the generalized multi-channel training. 
A first stable version of an AIRS model trained with 
this latter scheme should be available in the fall of 
2005. 
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