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1. INTRODUCTION 

In their study of the impact of various satellite data 
sources on the Eta model Data Assimilation System 
(EDAS), Zapotocny et al (2005) found that the impact of 
polar orbiter satellite data on moisture fields over land 
was very limited.  Moisture fields are historically the most 
difficult fields to forecast for mesoscale models, and this 
remains true today.  Figure 1 shows the impact of 
rawinsonde versus polar orbiter satellite data on the 
initial 850 hPa relative humidity field in EDAS.  Note the 
dominance of the radiosonde moisture field in the 
analysis, even though the radiosonde data is only taken 
twice a day and is from a sparse network with average 
spacing of ~ 500 km between stations. 

Synoptic analysis of water vapor and clouds from 
satellite would fill an important gap in our 
characterization of the atmosphere.  Better depiction of 
water vapor and clouds, which satellites promise, would 
satisfy critical needs of aviation users such as analyzing 
cloud base, detecting aircraft icing regions, and assisting 
short-term forecasts of clouds and moisture.  
Techniques to profile moisture from passive microwave 
sensors could propagate into data assimilation systems 
and weather forecast models and potentially yield gains 
on critical forecast needs like improved quantitative 
precipitation forecasts (QPF). 

Several meteorological satellites have the capability 
to greatly improve the analysis of moisture fields over 
land.  While infrared-based sensors such as the GOES 
imager and sounder do make a contribution in clear 
skies, the passive microwave sensors onboard the 
NOAA and DMSP satellites have not been fully  
exploited for providing water vapor information over land.  
In the passive microwave spectrum from 20 – 200 GHZ, 
a basic distinction is between atmospheric remote 
sensing over land and over ocean.  This is due to the 
higher emissivity of land (~ 0.95) versus ocean (~ 0.5) 
surfaces.  In addition, ocean emissivity is more readily 
modeled and is a function of fewer and better 
understood variables (windspeed, viewing angle, 
temperature) versus land (soil moisture, vegetation type, 

soil type, radiometric roughness).  Our lack of knowledge 
of land emissivity has hindered passive microwave 
atmospheric remote sensing applications, except for 
precipitation detection.  Figure 2 shows a recent global 
blended total precipitable water vapor (TPW) passive 
microwave product from NOAA, which has no coverage 
over land. 

In this paper we show our results to date on 
performing simultaneous retrievals of the water vapor 
and temperature profile, and surface emissivity from the 
Advanced Microwave Sounding Unit (AMSU) –A and –B 
instruments onboard the NOAA-15 and NOAA-16 
satellites.  The retrieval is named the CIRA 1-
Dimensional variational Optimal Estimation, or C1DOE. 
 
2. DATA 

AMSU is a set of instruments onboard the NOAA 
series of spacecraft with 20 channels from 23 to 183 
GHz.  The frequencies and instrument noise are shown 
in Table 1.  AMSU is a cross-track scanning instrument 
with spatial resolutions of 16 km at nadir for the 183 GHz 
moisture sounding channels and 50 km at nadir for the 
50-60 GHz temperature sounding channels.  The 
Advanced Technology Microwave Sounder (ATMS) in 
the NPOESS system now under development is similar 
to AMSU in a general sense. 

In order to minimize a cold bias in the AMSU-B due 
to use of antenna temperatures in the retrieval as 
opposed to brightness temperatures (Tb’s), we 
developed an antenna pattern correction (APC) for the 
AMSU-B radiances.  The APC has the effect of warming 
the Tb’s by a few Kelvin, depending on scan position.  
The APC has been shown to have an impact of up to 10 
% on upper tropospheric moisture retrievals (Nielsen et 
al. 2005 (submitted)). 

To test the performance of the C1DOE retrieval, two 
global matchup datasets of collocated radiosondes and 
AMSU overpasses have been created.  The NOAA-15 
dataset is from coastal and island stations from year 
2000, and the NOAA-16 and NOAA-17 matchup dataset 
is from September 2003.   



  

 
Table 1:  AMSU channel characteristics. 

 
A prototype near real-time C1DOE system has been 

developed at CIRA and is functioning with several data 
feeds.  Figure 3 shows the data flow through the system.  
Historical runs of C1DOE are also possible.  We have 
assembled all required data to use September 2003 as a 
test month.  In Fig. 3, GDAS is the NOAA Global Data 
Assimilation System, a 6-hour, 1-degree  global analysis 
used as a first guess.  AGRMET is a land surface model 
run at the Air Force Weather Agency and provides land 
boundary condition first guesses every three hours. 
C1DOE is hosted within the Data Processing and Error 
Analysis System (DPEAS), a computing environment 
described in Jones and Vonder Haar (2002). 

3. THE C1DOE ALGORITHM  

The C1DOE algorithm uses the method of Engelen 
and Stephens (1999) to simultaneously retrieve profiles 
of temperature and water vapor as well as cloud water 
path and surface emissivity.  It can be considered a 1-
dimensional variational data assimilation retrieval, or 
1DVAR.  Because of the highly coupled nature of the 
atmosphere and the sensitivity of microwave 
measurements to the desired retrieval parameters, more 
accurate retrievals of each can be achieved through a 
simultaneous retrieval.  Furthermore, the retrieval 
method is quite general, making it flexible in terms of 
data used and parameters retrieved.  The retrieval is 
structured in a modular fashion, so new data sources, 
updates on instrument noise and channel failures, and 
retrieval parameters can be added easily.  Our primary 
test data source is AMSU, although the SSMIS data 

from the DMSP satellites can be used at some point in 
the future. 

The retrieval scheme requires a first guess of the 
water vapor and temperature profiles as well surface 
emissivities at the relevant microwave frequencies.  An a 
priori distribution of the retrieval parameters is used to 
constrain a non-linear iterative optimal-estimation 
scheme which minimizes the cost function Φ  to find the 
optimal solution x, where: 
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(Equation 1) 
 

where x is the vector of parameters to be retrieved, xa is 
the a priori vector, y is the set of observations (Tb’s), 
F(x) is a forward radiative transfer model used to 
compute radiances given x, and Sa and Sy are the error 
covariance matrixes of the a priori data and the 
observations, respectively.  The vector of retrieval 
parameters consists of the temperature and moisture 
profiles, surface emissivity in 5 bands from 23 to 183 
GHz, and cloud liquid water is  available in cloudy cases, 
although cloud liquid water is currently disabled.  For the 
initial test of the retrieval, we focus on clear cases.  The 
presence of cloud as a constraint would best be added 
from another sensor, such as infrared or visible 
radiances.   The a priori error covariance matrix includes 
the variances of and correlations between the retrieval 
parameters, thus providing a constraint on the solution 
from a priori knowledge.  The formulation and sensitivity 
of the results to this matrix is currently under research.   

 Channel Frequency (GHz) NEDT 
(K) 

1 23.8 0.3 
2 31.4 0.3 
3 50.3 0.4 
4 52.8 0.25 
5 53.596 . 115 ± 0.25 
6 54.4 0.25 
7 54.94 0.25 
8 55.5 0.25 
9 57.290344 = f0 0.25 
10 f0 ± . 217 0.4 
11 f0 . 3222 .048 ± ± 0.4 
12 F0 . 3222 . 

022 
± ± 0.6 

13 f0 ± . 3222 ± . 010 0.8 
14 F0 . 3222 . 

0045 
± ± 1.2 

AMSU-A 

15 89.0 0.5 
1 89.0 2.0 
2 150.0 2.0 
3 183.31 1.0 ± 2.0 
4 183.31 3.0 ± 2.0 

AMSU-B 

5 183.31 7.0 ± 2.0 

For the forward radiative transfer, monochromatic 
microwave brightness temperatures are computed using 
numerical integration of the radiative transfer equation 
for a plane parallel, absorbing atmosphere together with 
Liebe’s MPM92 (Liebe and Hufford 1993) model of 
microwave atmospheric attenuation.  Only liquid clouds 
are currently included.  An analytic Jacobian, which 
calculates the sensitivity of the radiances to state 
variables, is used in the radiative transfer model for 
speed.  The method is modular so that an alternative 
RTM can be added if desired. 

4. RETRIEVAL RESULTS 

It is instructive to determine the expected 
radiometric response of the AMSU channels to water 
vapor over various highly emissive land surfaces.  If the 
change in Tb due to changing water vapor is below the 
instrument noise in Table 1, it is fruitless to attempt to 
retrieve these changes in water vapor.  Figure 4 shows 
the derivative (or analytic Jacobian) of brightness 
temperature for four channels sensitive to water vapor 
for a 1 g/kg change in water vapor at 500 hPa.  The 183 
GHz channels have a Tb change of several K, while the 
150 and 89 GHz channels show a smaller response.  So 
for detecting moisture at 500 hPa the 183 GHz channels 
do possess signal above the instrument noise, for all 
surface emissivities.  This indicates that theoretically 

 
 



  

there is signal to be extracted in a moisture profiling 
retrieval from AMSU over land. 

The performance of C1DOE over scenes dominated 
by ocean is shown in Figure 5 for 500 hPa mixing ratio 
and temperature.  255 matchups between NOAA-15 and 
radiosonde are shown.  The temperature first guess was 
from the NESDIS statistical retrieval (Mitch Goldberg of 
NESDIS) and the moisture first guess was from 
climatology.  Initial work showed significant biases in 
these retrievals, because the model C1DOE atmosphere 
was capped at 100 hPa and no antenna pattern 
correction was applied.  The results in Fig. 5 are much 
improved, although temperature has a slight cold bias. 

An attractive feature of C1DOE is the numerous 
diagnostics generated automatically from the 
mathematical framework.  In particular, C1DOE reports 
how much impact the observations and a priori 
constraint had on the solution.  This is presented as 
percent variance due to observations.  In Figure 6, an 
example of the C1DOE moisture retrieval over the U.S. 
is shown which includes this diagnostic.  The date is 
October 4, 2005, 1945 UTC.  C1DOE retrieved mixing 
ratio for 300, 500 and 850 hPa are shown, along with the 
variance due to the AMSU observations at each level.   
The black areas (within the AMSU swath) are where 
C1DOE did not converge in this experimental 
configuration.  This is typically due to precipitating clouds 
and also liquid clouds, which are not currently included 
in the physics of the retrieval.  Work is underway to add 
non-precipitating liquid clouds as a term in the cost 
function.  It is also important to note that the surface 
emissivity guess in this case is from the NOAA 
Microwave Emissivity Model (MEM, Weng et al. 2001), 
which is expected to have some differences from true 
emissivity and is the subject of related CIRA research.  
The results are encouraging because they show more 
impact from the data at 300 hPa, where the influence of 
surface emissivity is less.  There is also more impact 
over the ocean at 850 hPa, where the signal is greater.  
The main point of Fig. 6 is that C1DOE provides 
diagnostics which can be used to determine whether the 
data are affecting the solution.  This is extremely useful 
when adjusting the constraints of the retrieval, for 
instance the first guess and error for emissivity and the 
first guess and error of the atmosphere.  
       GPS-derived TPW values are a rich source of 
comparison for satellite retrievals.  There are roughly 
200 observations per hour available over CONUS, and 
the networks have been expanding.  Unlike traditional 
rawinsonde networks, GPS TPW values are taken at a 
frequency of hourly or greater.  The GPS TPW retrievals 
are quite accurate, to within a couple of mm.  Figure 7 
shows an initial comparison of C1DOE TPW (formed by 
integrating the 6 retrieved layers) versus GPS TPW.   
The retrieval seems to be biased a bit high in this initial 
comparison. 

5. WORK IN PROGRESS AND FUTURE WORK 

An algorithm for the retrieval of water vapor profiles 
from passive microwave satellite observations has been 
presented. The retrieval shows encouraging 

performance over oceans.  Theoretical results indicate 
that there is signal available for retrievals over land.  
Better characterization of the microwave land emissivity 
is the key to realizing the potential of passive microwave 
measurements.  Related work at CIRA (see Jones et al. 
Poster 5.8 this conference) aims to improve our 
understanding of microwave land emissivity. 

 
Current work in progress focuses on these topics: 
• Test the hypothesis that land performance can 

be improved using a retrieved emissivity 
database.  Assess baseline performance using 
the NOAA MEM. 

• Measure sensitivity to a priori covariance 
matrix.  Does it need refinement? 

• Add dynamic creation of cloud liquid water in 
the retrieval.   

• Add infrared data as a cloud constraint? 
• Explore cloud performance with NASA 

CloudSat data as verification.  
 

From our initial results with C1DOE over land, it 
appears we are making progress toward increasing the 
impact of passive satellite microwave observations on 
water vapor and clouds over land.  
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Radiosonde still dominates moisture field impact in mesoscale forecast 
models 
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Figure 1:  Distributions of the four-season, time-averaged 00-h sensitivity (%) for 850-hPa relative humidity from Eta model.  
Polar orbiter impact includes AMSU-B.  Contour interval 2%.  (after Zapotocny et al. 2005). 

  

  

  

  

  

  

  

  

  

  

  

 

Figure 2:  NESDIS blended total precipitable water product (mm) for October 2, 2005.  Three AMSU and three 
SSM/I instruments are blended.  Note that there are no fields over land. 

 

 
 



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

C1DOE Data Flow at CIRA
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DPEAS = Data Processing and Error Analysis System (J. Atm. Ocean Tech, 19, pp. 1307-1317; 2002)

Figure 3:  C1DOE data flow at CIRA. 

  

  

  

  

  

  

  

  

 
 



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure 4:  The derivative of AMSU brightness temperature for a 1 g / kg change in 500 mb mixing ratio 
as emissivity ranges from 0.5 to 1.0.  The magnitude of the change decreases as emissivity increases, 
but is mostly above the AMSU sensor noise.  This indicates that there should be a signal to extract in a 
retrieval. 
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Figure 5:  Comparison of C1DOE retrievals of 500 hPa temperature and mixing ratio for 255 coastal and island 
radiosonde sites.  Results are from NOAA-15 in year 2000.  
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0% 60% % variance due to observations 
Figure 6:   C1DOE moisture results over the United States from a NOAA-16 pass at 1945 UTC, October 4, 
2005.  Upper row is mixing ratio at 300, 500 and 850 mb.  Lower row is percent variance in solution due to 
observations.  Black areas indicate non-convergent retrievals, often due to clouds and precipitation.  See text for 



  

 
 

  

  

  

 

Figure 7:  Comparison of C1DOE retrieved total precipitable water (TPW) with GPS-derived 
(TPW) from September 2003 over CONUS for 26 collocated retrievals. 
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