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I. Introduction

Winds in coastal areas are both important and
difficult to measure. In the San Francisco and
Monterey Bay areas, several systems offer data via
real-time web access. These include high frequency
(HF, decameter wavelength) ground-wave radars at
multiple frequencies and on shore and offshore (buoy)
anemometers. This paper contains a brief review of
our empirical technique for measuring ocean winds
with surface-wave HF radar, and reports how we
integrate those winds into a system for objective
analysis of routine meteorological information and
finally produce a wind field map over the San
Francisco and Monterey Bay areas — land and sea.

HF radar has established itself as a useful tool for
observing near surface currents in the coastal ocean.
Radar observations of ocean currents are not directly
related to winds, but the shear in surface currents
results from wind stress at the surface. Current shear
can be estimated from radar measurements at multiple
frequencies (Meadows, 2002), making it reasonable to
consider estimating winds from radar data. The MO
and M1 buoys (see Fig, 1) can provide independent
data for building and testing empirical wind estimation
methods, The buoys are maintained by the Monterey
Bay Aquarium Research Institute. (MBARI)

Onshore anemometer data obtained from many
sources around San Francisco Bay are archived by
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the U. S. Geological Survey (USGS) and San Jose
State University (SJSU). These archives also include
several sites around Monterey Bay that can be used
with an objective analysis computer program to
estimate winds over both the San Francisco and
Monterey Bays. The inclusion of wind estimates from
radar observations adds important information for the
analyses (Vesecky et al.,, 2005). The objective
analysis of all these merged data is the final product
that is published in real-time via the WWW.

2. Methods

2.1 Measurement of ocean surface currents and
winds with high-frequency radar

High frequency, ground-wave radar is useful for
observing near surface currents in the coastal ocean
(e.g. Barrick et al. 1985). The radars detect currents
because constructive interference gives returns
almost exclusively from a single (Bragg resonant)
ocean wavelength equal to half the radar wavelength.
Oversimplifying, the radar deduces radial current
components from the difference between the radar
return’s Doppler shift and the expected Doppler shift
due to the theoretical gravity wave speed (in the
absence of surface current) for the observed ocean
wavelength. Effective depth of the current
measurement depends on the radar wavelength, with
longer waves feeling the current to greater depths.
Theoretical (Stewart and Joy, 1974) and empirical
(Teague et al. 2001) relationships have been
developed between effective current measurement
depth and wavelength.

Multiple radars observing the same area of the
ocean, with some straightforward trigonometry,
provide estimates of the two dimensional current



motion. In this method we typically use data from
multi-frequency coastal radars (MCR’s), measuring
currents at depths to a few meters below the surface.
MCR systems are research tools built by a
consortium: University of Michigan, Veridian ERIM
International, Stanford University and University of
California at Santa Cruz. At present we also use data
from one MCR and four Codar OS SeaSondes.
Frequencies and effective depths are shown in
Table 1.

Radar echoes from waves moving toward the
radar differ from those moving away, causing
asymmetry in radar reflectivity that can be used to
determine wind direction (but not speed). Among
others, Long and Trizna (1973) and Georges et al.
(1993) developed methods for using the Bragg return
signal strength difference between the positive
Doppler (approaching wave) echo and the negative
Doppler (receding wave) signal (AS in dB) to estimate

wind direction relative to the radar line of sight (6,
degrees). We use the relationship developed by
Georges et al. (1993) :

6=0° AS <24 (1)
0=:180(24+AS) for  1-24<AS<24
9=180° AS224

Winds toward (6=180°) or away from (6=0°) the radar
have no ambiguity, but Equation 1 gives two
possibilities for all other directions, e.g. when
AS=0 dB, wind direction will be at right angles to the
look direction, either from the right or left.

TABLE 1: Operating frequency and effective depth of
measured ocean currents of radars
operating in the Monterey Bay, used for

this study.
Radar Location Frequency| Effective
type (MHz) | Depth (m)
Santa Cruz 1 4.80 2.5
MCR  |Santa Cruz 2 6.80 1.8
Santa Cruz 3 13.55 0.9
Santa Cruz 4 21.77 0.6
Moss Landing 22.8 0.6
CoDAR |Naval Post Grad 13.47 0.9
Pt. Pinos 13.40 0.9
Santa Cruz 12.15 0.9

Steady-state conditions (admittedly infrequent)
produce wind profiles and ocean current profiles that
are related to the friction velocity at the surface.
According to Meadows (2002), the air friction velocity
(us) is related to the friction velocity in water (us)
through the ratio of air/water densities (pa/pw). The
equation is:

0.5 0.5
Uy _[ Pa z(i) ~0.033 @
O 1025

Seawater density (pw=1025 kg m™) is used to get the
constants in Equation 2, but the result is essentially
the same for fresh water. It should be possible to
determine u~y from the MCR current profile, then
determine usx, from Equation 2. Hasse and Weber
(1985) show how wind speed and ux. are related.

They use a drag coefficient of 1.3x10~® and showed

that the wind speed at 10 m, u;=28u+. Substituting in
Equation 2, then gives

Uy

Uy = 840Uy, . ©)

The preceding discussion suggests that there is
enough information to estimate wind speed and
direction directly from MCR observations, but it has
been difficult. One reason for the difficulties may be
large number of confounding variables. We sought a
statistical approach that uses MCR information in a
way that might filter out noise and incorporate
variables whose relationship is not fully understood.
The approach adopted below uses the MCR Bragg line
ratios and MCR and SeaSonde radial and vector
currents as a training data set for the method of
Partial Least Squares (PLS, StatSoft 2004).

Partial Least Squares was developed in the
1960’s by economist Herman Wold for modeling poorly
understood relationships with collinear input variables.
To illustrate how PLS works we will first look at
comparable methods. (StatSoft, 2004; Tobias, 1995)

At the center of any linear regression is the
equation:

y=by+x1by +x2by +...+ x b, + € (4)

where ¢ is residual error; x is the input data, y is the
prediction and b are coefficients. In matrix form this
becomes

Y=XB +E (5)

where X is the input data having n cases by p
variables, Y is the prediction data having n by m
responses, B is p by m and E is an error matrix.

Various techniques for solving for B include
Multiple Linear Regression (MLR), Principal
Components Regression (PCR), and Maximum
Redundancy Analysis (MRA). MLR uses a least
squares approach to solve for B, which requires
matrix inversion. MLR requires relationships between
predicted and input variables to be clearly defined, no
co-linearity in the input variables and the number of
input variables must not exceed the number of
samples. PCR first breaks down the data into X-
scores using a decomposition of X'X, where the prime
denotes the transpose. The X-scores capture the
maximum variability in the input data and are then
regressed (using least squares) against the prediction
variables to generate B. However, PCR focuses on
the largest variability of the input data, which may not
be correlated to the prediction variables. MRA uses



a decomposition of Y'Y to calculate Y-scores. This
captures the variability of the prediction data in the
regression, but still ignores the correlations between
the X and Y data, and tends not to be stable. PLS
calculates scores using a decomposition of the matrix
Y'XX'Y. Skipping how, the decomposition calculates
the p by ¢ matrix W such that T = XW, and T has the
maximum correlation with the prediction data. This
means that W captures the space that best relates to
the prediction variables. With the hard part done,
least squares is used to calculate Q from Y = TQ + E,
and the matrix of coefficients B is simply WQ.

PLS is considered linear because of the linear
regression between Y and T. However, if analysis
shows that while Y and T are highly correlated they do
not have a linear relationship, (i.e. y;j = t# + e), the
appropriate relationship can be inserted at that step.
Because the mathematical relation is on T calculated
from T = XW, the model can no longer be simplified to
B = WQ. Rather, W and Q must be retained in order
to generate future predictions.

In our case, the input data matrix X is built from
radar data, calculated at the MO and M1 buoy
locations (See Figure 1 below), and the response
matrix Y is derived from winds measured at the buoys.
Each radar measures radial current vectors; if the
radial vectors for the different radars are sufficiently
different, and the radar frequencies are similar, then
straightforward trigonometry can be used to calculate
total current vectors.

The MCR also generates Bragg Line ratios, giving
a choice of two possible wind directions for each
frequency (see Eqg. 1). The problem is to determine
which of the two directions is most likely. We assume
that the horizontal wind shear is not great, so that
wind directions derived from nearby locations should
be similar. Using this assumption, directions at
nearby locations are compared by adding and
subtracting the Bragg Line wind direction to the look
angle; those pairs that produce the smallest spatial
changes in wind direction are chosen, and used as
inputs to the PLS methodology, which determines their
proper weighting. The format of the X matrix is based
on what data are available to allow flexibility. A
separate X matrix is required at every point for which
we would want a wind estimate. Thus, each
combination of data requires it's own PLS model to
generate a wind estimate.

As noted, the PLS algorithm was applied to a
subset of data, called the ‘training’ set. Typically, we
used 1/6 to 1/3 of the available data taken over an
8—month period for training. The resulting PLS
prediction model was applied to the remaining data to
validate the model.

The many factors that go into generating a
calibration model break down into three steps: 1)
choosing a training sample set; 2) deciding which, if
any, non-linear mathematical treatments should be
done in the PLS; and 3) determining which, if any,
non-linear mathematical treatments should be applied
to portions of the radar data. Of these, the first,
choosing a training set that totally encompasses the

data space and has an even distribution of both signal
and noise, is generally the most important.

A computer script has been written to generate of
few training sets and test the many possible
combinations. To rank the models, the algorithm
calculates the bias and standard error of prediction
(SEP) for four groups, high and low +/- wind vectors.
Each section is weighted by performance in such a
way that if the model has large errors in one section
those errors carry the most weight. A model that has
near perfect estimation in 3 sections but fails the 4"
(i.e. cannot predict high positive wind vectors) will
rank lower than a model that has moderate but
consistent performance across the whole range of
data. The top 20 or so are then evaluated by eye to
select the most robust model.

2.2 Objective analysis with the Winds on Critical
Streamline Surfaces (WOCSS) methodology

The Winds on Critical Streamline Surfaces
(WOCSS) methodology (Ludwig et al. 1991) provides
objective analyses of wind observations that account
for the fact that stable layers in the atmosphere
suppress vertical motions and force air flow around
hills and ridges, rather than over them. Briefly, the
WOCSS code defines surfaces on which flow should
take place, given that there is a maximum height to
which the kinetic energy of the wind can lift a parcel
of air in a stably stratified atmosphere. The maximum
height is based on the critical dividing streamline
concept, and assumes that air parcel vertical
displacement in complex terrain balances the original
kinetic energy of the flow at low altitudes, and the
energy required to change altitude in the presence of
a buoyant restoring force (see e.g. Sheppard 1956;
Hunt and Snyder 1980; McNider et al. 1984). This
energy constraint leads to a relationship among

potential temperature lapse rate (d6/dz), the maximum
height to which the air can rise (Zmax), and the low-

altitude wind speed v, at the lowest height (zo) for a
particular low surface:

deo
Zmax —20 = VO(g ) . (6)

T is the mean temperature between z, and Zmax, and
g is the gravitational constant.

The low altitude wind speed Vo is defined from
winds first interpolated to terrain-following surfaces.
Equation 6 determines the maximum height for each of
a number of flow-following surfaces, which may
intersect the terrain when the atmosphere is stable. A
second interpolation defines winds on the new
surfaces. Then, these “first guess” winds are
iteratively adjusted to reduce two-dimensional
divergence on the flow surfaces. Winds are set to
zero where the flow surfaces intersect the terrain so
the iterative adjustments force flow around the terrain
obstacles. The code also includes provisions so that
the presence of a stable layer at one altitude will
influence flow at levels above and below that layer.
The method performs well when there is adequate



input data (Bridger et al. 1994; Ludwig and Sinton
2000).

3. Results

To generate wind estimates from radar data, the
radar data from each site is collected. For each point
over the bay, the data is processed, and if enough
signal is available, compiled into a matrix. The
appropriate PLS model for that matrix format is then
applied to generate a wind estimate.
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Figure 1 Radar and buoy locations, and wind fields
without (upper panel) and with (lower) use of
radar wind estimates over Monterey Bay.

The radar wind estimates are then merged with
the most recent Oakland and Vandenberg Air Force
Base soundings anemometer readings around the San
Francisco and Monterey Bay areas to provide the
inputs for the WOCSS analysis which generates wind
estimate that cover an area approximately 222 km (N-
S) by 177 km (E-W). Figure 1 shows a subsection of
the larger grid. The full area of coverage is shown in
Figure 2. Buoy wind measurements from the MO, M1
and M2 moorings are not used at present since we do
not currently have access to them without a time

delay that precludes achieving our goal of providing
real time wind fields. We anticipate that the latency of
the buoy wind measurements can be reduced and that
they soon can be used in this objective analysis.

The winds are plotted with 1-km spacing in
Figure 1, and 4-km spacing in Figure 2, although the
calculations were done on a 1-km grid in both cases.
Unlike anemometer measurements that represent
winds at a point, the winds based on HF radar
measurements roughly represent averages over areas
three to five km across. The merging of the two kinds
of data does not present a problem, because spatial
averaging is already inherent in the interpolation used
to get first guess fields for the WOCSS analysis
(Ludwig et al., 2006).

Earlier studies (Drake et al. 2004) showed that
the addition of radar information changed the average
winds by as much as 15° in direction and 3 ms™ in
speed. Comparison of the two panels in Figure 1
shows that the effects can be much larger for
individual cases. The radar has detected a small
eddy just south of Santa Cruz. Archer et al. (2005)
have deduced the presence of such eddies from the
few buoy observations, onshore measurements and
satellite imagery, but the availability of the radar data
may make it easier to identify these circulations in the
future and better understand the mechanisms that
cause them.
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Figure 2 Complete area of coverage for the analyses.

4. Summary and Conclusions

HF radar observations of the ocean surface in
coastal areas already provide very valuable
information about the ocean currents. The studies
described here have shown that these same radar
observations also contain very valuable information
about the winds over the water. However, that
information cannot be easily extracted by



straightforward methods. Nevertheless, the PLS
approaches discussed here have proven effective in
estimating winds at the buoy locations where the
results can be verified.

Once the winds over water have been determined
from the radar observations, it is quite easy to
combine them with conventional anemometer
measurements to provide a more complete set of
inputs for the WOCSS objective analysis methods.
The preliminary results given here demonstrate the
value of the additional radar information. The example
in Figure 1 showed that without the radar data, the
analyses did not detect the presence of the smaller
scale eddy circulation. Such circulations are believed
to be present quite frequently over Monterey Bay, and
they often go undetected.

In summary, multifrequency coastal HF radar
measurements of the wind, together with buoy and
land based anemometers can be used with the
WOCSS objective analysis to produce wind fields over
the coastal land and ocean with good time and space
resolution. Coastal HF radars help make up for the
sparse deployment of coastal buoys and improve wind
field estimates over the ocean.

HF radar systems will be installed along the entire
California coast over the next three years and they
are being deployed with increasing density along other
parts of the US coastline. Although most of these
units are not multiple frequency, as required for wind
estimation, they could be modified at a relatively small
(but not insignificant) cost. The availability of real-
time wind fields produced using the methods
demonstrated here would find extensive application in
coastal science and engineering that should offset
any additional cost. These newly available wind
estimates would improve environmental monitoring and
prediction, and aid in brush and forest fire control, air
and sea rescue and coastal recreation activities, such
as fishing, boating, sailing, wave and wind surfing,
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