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Abstract

A new scale decomposition of the Brier score for evaluating spatial probabilistic forecasts is presented. The tech-
nique is illustrated on the Canadian Meteorological Center (CMC) lightning probabilistic forecasts. Probability fo-
recasts of lightning rate for 3 hour time windows and 22 km spatial resolution are verified against lightning frequen-
cies from the North American Lightning Detection Network (NALDN) on a domain encompassing Canada and the
northern United States. Verification is performed for lightning rates exceeding different thresholds, to evaluate the
forecast performance both for modest and intense lightning activity. Forecast and observation are decomposed into
the sum of components on different spatial scales by performing a 2D Haar wavelet decomposition. Evaluation at
different spatial scales is then performed by evaluating Brier score and skill score for each spatial scale component.

1 INTRODUCTION

Verification is a key component of weather forecast-
ing. In fact, verification not only allows one to monitor
and compare the performance of weather forecasts,
but also to analyze the nature of the forecast error.
A diagnostic verification can help to detect the fore-
cast weaknesses and systematic errors in Numerical
Weather Prediction (NWP) models. Therefore, a di-
agnostic verification provides guidances for forecast-
ers and NWP modelers which leads to new devel-
opment and improvements. This work introduces a
new diagnostic verification technique for probabilistic
forecasts defined on a spatial domain.

Weather phenomena are characterized by the
presence of features on different scales. Phenom-
ena on different scales are often driven by different
physical processes. Verification on different spatial
scales can therefore provide useful insight into the
NWP model representation of different physical pro-
cesses, and indicate which of these processes might
need further development. The verification technique
introduced in this work aims to provide feedback on
the performance of a probabilistic forecast on differ-
ent spatial scales. For studying the forecast pre-
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dictability scale limits, it is desirable to establish at
which scale there is a transition from negative to pos-
itive skill. Moreover, the technique aims to provide
feedback on the capability of the forecast to repro-
duce the scale structure of the observation.

Few techniques for the verification of spa-
tial deterministic forecasts can be found in the lit-
erature: Briggs and Levine (1997) introduced a
wavelet-based verification method on different spa-
tial scales based on continuous verification statis-
tics (e.g. MSE); Casati et al. (2004) developed
an intensity-scale verification technique based again
on 2D wavelet decomposition and on a categorical
verification approach; Zepeda-Arce and Foufoula-
Georgiou (2000) and Harris and Foufoula-Georgiou
(2001) assess the forecast capability of reproducing
the observation spatio-temporal and multi-scale spa-
tial structure of precipitation fields. De Elia et al.
(2002) and Denis et al. (2003) evaluate the fore-
cast timescale predictability limits as a function of the
scale for high resolution regional models. The veri-
fication technique introduced in this work is specifi-
cally designed for the verification on different scales
of probabilistic forecasts. Forecast probability and
corresponding observed frequency images are de-
composed into the sum of components on different
spatial scales by performing a 2D Haar wavelet de-
composition. Brier score and skill score are eval-



Figure 1: Domain of 5o � 5o latitude-longitude sec-
tors on which statistical regression models were de-
veloped to produce the CMC lightning probability
forecast (image kindly provided by W. Burrows).

uated on each scale component along with the
squared energy bias. The scale structure represen-
tation is assessed by the ratio of forecast and obser-
vation percentage of energy that each scale exhibits.

The technique is illustrated on a representative
case study of the CMC lightning probabilistic fore-
casts. Section 2 reviews the general features of the
CMC lightning probabilistic forecasts and introduce
the case study. The verification method is fully de-
scribed in Section 3. Interpretation of the verification
results for the case study analyzed are given along
with the verification method description. Finally, in
section 4, some conclusions are given.

2 THE CMC LIGHTNING PROBABILITY
FORECAST

Lightning probabilistic forecasts are produced op-
erationally at the Canadian Meteorological Center
(Burrows et al., 2005). The probability of lightning
occurrence exceeding specific thresholds in 3 hour
time windows is forecast on a domain of approxi-
mately 20 km resolution encompassing Canada and
the northern United States, with a time projection
up to 48 hours. The forecast is produced by a tree
structured regression model: individual statistical re-
gression models were developed for each 5o � 5o

latitude-longitude sector (see Figure 1), for each
of the months from May to September. Predictors
to construct the regression equations were derived
from the 24 km resolution Global Environment Multi-
scale (GEM) NWP model output (Côté et al., 1997).
In the year 2004 the GEM NWP model has been up-
dated to 15 km resolution: predictors for the light-
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Figure 2: Observed lightning occurrence in the three
hour window from 21:00 to 24:00 UTC on the 17th

July 2004.

ning statistical model are currently obtained from the
higher resolution GEM model output and interpolated
on the old 24 km resolution GEM grid before applying
the regression equations. Predictands are lightning
flash reports from the NALDN distributed by Vaisala
Inc. In order to match the predictors, the predictands
have been gridded on the 24 km resolution GEM do-
main. Each flash has been assigned a weight of one
if within a distance of 10 km from the grid point, and
a weight decreasing linearly from one to zero as the
distance from the grid point increases from 10 to 20
km. Predictors and predictands of the summers of
2000 and 2001 have been used as training data set
to construct the regression model.

The verification method introduced in this work
has been tested on forty-six case studies of the CMC
lightning probabilistic forecast for the summer 2004.
In this work we illustrate the verification method on
one representative case. Three categories of light-
ning probabilities are considered: 1) probability of
any lightning, which is defined as the probability that
the lightning occurrence in the three hour time win-
dow is greater than zero; 2) probability of occasional
to extreme lightning, i.e. the probability that the light-
ning occurrence in the three hour time window ex-
ceeds the threshold of 0 � 5; 3) probability of frequent
lightning, which is defined as the probability that the
lightning occurrence in the three hour time window
exceeds the threshold of e3 � 20 � 085. The fore-
cast probabilities are verified against lightning flash
reports from the NALDN. The observed occurrence
of lightning in three hour time windows is gridded on
the forecast domain. Observations are processed in
the same fashion used for the predictands when de-
veloping the statistical regression model, i.e. each
flash has been assigned a weight of one if within a
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Figure 3: Observed lightning frequency in the three
hour window from 21:00 to 24:00 UTC on the 17th

July 2004 obtained from the observed lightning oc-
currences shown in Figure 2.
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Figure 4: 21 hour lead time probabilistic forecasts for
the three categories of any lightning, occasional to
extreme lightning and frequent lightning valid in the
three hour window from 21:00 to 24:00 UTC on the
17th July 2004.



distance of 10 km from the grid point, and a weight
decreasing linearly from one to zero as the distance
from the grid point increases from 10 to 20 km. Fore-
casts probabilities of any lightning, occasional to ex-
treme lightning and frequent lightning are verified
against observed frequencies of the same three cat-
egories, i.e. binary images equal to one where the
observed occurrence of lightning exceeds the cor-
responding category threshold, and equal to zero
elsewhere. Figure 2 shows the observed lightning
occurrence in the three hour window from 21:00 to
24:00 UTC on the 17th of July 2004; Figure 3 shows
the corresponding observed lightning frequency, ob-
tained from the observed lightning occurrences by
thresholding with the appropriate category threshold;
Figure 4 shows the 21 hour lead time probabilistic
forecasts for the three above-mentioned categories
valid at the same time. This case shows a typical
synoptic situation: the lightning activity on the east
side of the domain is related to a large frontal system;
the lightning activity on the west side of the domain
is mainly related to small scale convective activity lo-
cated in the region of the Rocky Mountains.

3 THE VERIFICATION METHOD AND
INTERPRETATION OF THE VERIFI-
CATION RESULTS

3.1 Verification domain

The forecast and gridded observation domain is a po-
lar stereographic grid of 295 � 183 pixels with pole
coordinates at N � �

81 � 5 � 309 � 5 � , a distance of 20
km between 2 grid points at 60 N and an angle
of 21o between the Greenwich meridian and the x
axis, positive counter-clockwise. Since the regres-
sion model was not developed for covering such a
domain, some of the more external grid points have
missing value (red pixels in Figures 3, 4). The do-
main considered in this work for verification purposes
is a reduced rectangular domain of 256 � 128 pixels
embedded in the 295 � 183 pixel domain so that the
number of missing values is minimized. The dimen-
sions of the verification domain chosen are integer
powers of 2 (256 � 28;128 � 27) to have a dyadic
domain, appropriate for performing the 2D discrete
wavelet transform (see Appendix). Note that the rect-
angular verification sub-domain is the union of two
squared sub-domains of 27 � 27 pixels. The wavelet
decomposition is performed on the east and on the
west squared sub-domains, separately, as described
in the Appendix. Then, the union of the east and
west wavelet components on each scale is consid-

ered and, where appropriate, the average of the ver-
ification statistics for the east and west sub-domains
is evaluated. When performing the wavelet decom-
position, the missing values within the rectangular
verification sub-domain are assigned the average of
the non-missing values either of the west or east sub-
domain, depending on which of these square sub-
domains they belong to. Note that this substitution
does not affect the statistic behaviors since this value
is the largest scale father wavelet component value
evaluated on the non-missing values (see Appendix).

3.2 Images decomposition on different
spatial scales

Forecast probability image (Y ) and observed fre-
quency image (X ) for the three categories of any
lightning, occasional to extreme lightning and fre-
quent lightning are decomposed on different scales
by a 2D discrete Haar wavelet decomposition
(Daubechies (1992); Mallat (1989); see Appendix).
Each image is expressed as the sum of image com-
ponents on different spatial scales:

Y �
J

∑
j � 1

Yj �m � YJ � f � (1)

X �
J

∑
j � 1

X j �m � XJ � f � (2)

where Y j �m and X j �m are the mother wavelet com-
ponents of forecast and observation images on the
scale j and YJ � f and XJ � f are the father wavelet com-
ponents of forecast and observation images on the
largest scale J � 7. The resolution of the mother
wavelet components for j � 1 � � � ��� 7 is equal to 2 j � 1

pixels, corresponding approximately to 20, 40, 80,
160, 320, 640, 1280 km. The largest scale father
wavelet components YJ � f and XJ � f are obtained from
the average of the forecast and observed values on
the east and west squared sub-domains. The resolu-
tion of the father wavelet components on the largest
scale J � 7 is 27 pixels, corresponding approximately
to 2560 km.

3.3 Energy and energy bias on different
scales

The squared energy of forecast probability image
and observed frequency image is defined as

En2 � Y �	� Y 2 � En2 � X �	� X2 � (3)
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Figure 5: Base rate of the observed frequency im-
ages obtained from the case study shown by Figures
3, 4 for the three categories of any lightning, occa-
sional to extreme lightning and frequent lightning.

where the over-bar indicates hereafter averaging
over the pixels in the east and west squared sub-
domains. The squared energy provides feedback
on the quantity of events present in an image. The
squared energy of an image with zero mean is equal
to the image variance. The squared energy of binary
images (e.g. the observed frequencies image X ) is
equivalent to the image mean and to the image sam-
ple climatology (or base rate):

En2 � X �	� X2 � X � (4)

Figure 5 shows the base rate of the observed fre-
quency images obtained from the case study shown
by Figures 3, 4 for the three categories of any light-
ning, occasional to extreme lightning and frequent
lightning. Note that the frequency images for the
three categories are defined for increasing thresh-
olds. Therefore, the amount of events and the base
rate associated to the three categories decreases as
the threshold increases. The category of frequent
lightning exhibits the smaller base rate, the category
of any lightning exhibits the largest base rate.

The squared energy spatial scale components
of forecast probability image and observed frequency
image are defined as:

En2 � Yj �m �	� Y 2
j �m � En2 � X j �m � � X2

j �m �
En2 � YJ � f � � Y 2

J � f � En2 � XJ � f �	� X2
J � f �

(5)

where Y j �m, X j �m, YJ � f and XJ � f are the forecast and
observation mother and father wavelet components
(see Eqns. (1) and (2)). The squared energy spa-
tial scale components provide feedback on the quan-
tity of events present in each image at each differ-
ent spatial scale. Figure 6 shows the squared en-
ergy scale components for the case study illustrated

in Figures 3, 4 for the three categories of any light-
ning, from occasional to extreme lightning and fre-
quent lightning. Note that the squared energy of the
category of frequent lightning are visibly smaller on
all the scales than the squared energy of the other
two categories, for both forecast and observation;
this is due to the presence of less events in the cat-
egory of frequent lightning, since defined by a higher
thresholding on the lightning occurrence. The same
argument applies to the categories of occasional to
extreme lightning and any lightning, however the dif-
ferences in their behavior are less remarkable.

Figure 6 shows that for both the probability fore-
cast and the observed frequency the smallest scale
exhibits the largest squared energy. Then, as the
scale increases, the squared energy decreases. This
indicates that both in the forecast probability image
and in the observed frequency image there is a large
number of small scale events and then, as the scale
increases, the number of events decreases. The
largest father wavelet component (scale 8 in Figure
6) exhibits a larger squared energy with respect to
the immediately preceding large scales: this scale
provides a measure of the average value of the fore-
cast and observed images over the entire domain.
From the comparison of the largest scale compo-
nents of the squared energy of the forecast and ob-
servation it can be seen that the forecast overall av-
erage value is significantly larger than the observed
one. This is due to the overall over-forecasting
clearly shown in Figures 3, 4. The squared energy
components on the intermediate scales 3,4 and 5
are visibly larger in the observation than in the fore-
cast, showing an under-forecast of features on the
80, 160, 320 km scales.

The ratio of the squared energy scale com-
ponents for forecast probabilities and observed fre-
quencies provides a measure of the bias on differ-
ent spatial scales. If the scale component squared
energy bias is greater than one, it indicates over-
forecasting on such a scale; if it is smaller than one
it indicates under-forecasting. The bottom panel of
Figure 6 shows the ratio of the squared energy scale
components for forecast probabilities and observed
frequencies for the case study illustrated in Figures
3, 4 for the three categories of any lightning, from oc-
casional to extreme lightning and frequent lightning.
The large value of the squared energy bias compo-
nent on the largest scale indicates the overall over-
forecast for all three categories. The forecast for the
categories of occasional to extreme lightning and fre-
quent lightning underestimate all the smaller scales,
in particular the scales 3,4 and 5 corresponding to
features of 80, 160, 320 km resolution. The fore-
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Figure 6: Squared energy scale components and
their ratio for the case study illustrated in Figures 3,
4 for the three categories of any lightning, from occa-
sional to extreme lightning and frequent lightning.

cast for the category of frequent lightning underesti-
mates small scales (scales 1 to 4) and overestimates
some of the larger scales (in particular scale 5): in
fact it can be seen in Figures 3, 4 that the forecast
is smoother than the observed field and is character-
ized the presence of features of 320 km or larger, not
present in the observed frequency image.

3.4 Scale structure representation

The sum of the squared energy components on dif-
ferent scales defined by Eqn. (5) is equal to the
total squared energy defined in Eqn. (3). In fact,
since the wavelet components obtained from a dis-
crete wavelet filter are orthogonal, it follows that

Yj �mYk �m � 0 � X j �mXk �m � 0 � �
j �� k;

Yj �mYJ � f � 0 � X j �mXJ � f � 0 �
(6)

From this result and Eqns. (3), (1), (2) and (5)
the forecast and observation squared energy can be
written as

En2 � Y �	� Y 2 � �
∑J

j � 1 Yj �m � YJ � f � 2 ��
∑J

j � 1 Yj �m � YJ � f �
�
∑J

j � 1 Yj �m � YJ � f � �
∑J

j � 1 Y 2
j �m � Y2

J � f �
∑J

j � 1 En2 � Yj �m � � En2 � YJ � f � ;

En2 � X �	� X2 � �
∑J

j � 1 X j �m � XJ � f � 2 ��
∑J

j � 1 X j �m � XJ � f �
�
∑J

j � 1 X j �m � XJ � f �	�
∑J

j � 1 X2
j �m � X2

J � f �
∑J

j � 1 En2 � X j �m � � En2 � XJ � f � �

(7)

This result enables one to evaluate the frac-
tion with which each scale contributes to the total
squared energy:

En2
%

�
Yj �m � � En2 � Yj �m ��� En2 � Y � ;

En2
%

�
YJ � f � � En2 � YJ � f ��� En2 � Y � ;

En2
%

�
X j �m � � En2 � X j �m ��� En2 � X � ;

En2
%

�
XJ � f �	� En2 � XJ � f ��� En2 � X � �

(8)

The percentage of squared energy on each scale
provides feedback on the partition of the image total
amount of events on the different scales, and there-
fore on the scale structure of forecast and observa-
tion images. Figure 7 shows the forecast and ob-
servation percentages of the squared energy scale
components for the case study illustrated in Figures
3, 4 for the three categories of any lightning, from oc-
casional to extreme lightning and frequent lightning.
Most of the conclusions drawn for the squared en-
ergy (Figure 6), can be deduced also from Figure
7: for both forecast and observation, the smallest



scale exhibits the largest fraction of squared energy
(events), and then, as the scale increases, the frac-
tion of squared energy (events) decreases; the fore-
cast largest scale component (overall average value)
contributes in a significantly larger proportion to the
total squared energy than the observed one, due to
the already diagnosed overall over-forecasting; the
observed larger percentage of the squared energy
components on the intermediate scales 3,4 and 5
diagnoses the under-forecast of features on the 80,
160, 320 km scales.

However, the information provided by the
squared energies shown in Figure 6 is conceptually
different from the information provided by the fraction
of the squared energies shown in Figure 7. The for-
mer provides information on the quantity of events
on each scale. Therefore they are dependent on
the total amount of events present in the images (or
sample climatology). This is the reason why in Fig-
ure 6 the frequent lightning category exhibits smaller
energies than the other two categories, because of
its smaller sample climatology (see Figure 5). The
behavior of the squared energy on different scales
for the category of frequent lightning is barely notice-
able in Figure 6, because its magnitude is so small
when compared with the other two categories. On
the other hand, Figure 7 provides information on the
fraction for which each scale contributes to the to-
tal energy. Such a fraction is independent from the
sample climatology (the sums of the fractions of the
squared energies shown in Figure 7 for the three cat-
egories are equal: the statistics for the three cate-
gories are more directly comparable). The behav-
ior of the fraction of the squared energy on different
scales for the category of frequent lightning is better
shown in Figure 7 and is more directly comparable
with the one of the other two categories. The fraction
for which each scale contributes to the total squared
energy provides feedback on the scale structure of
the image. From the comparison of the forecast and
observation percentages of squared energy on dif-
ferent scales shown in Figure 7 for the category of
frequent lightning it can be noticed that the forecast
energy is more concentrated on large scales and the
observation energy is slightly more concentrated on
small scales: the forecast is smoother than the ob-
servation.

Note that for both forecast and observation the
fraction of squared energy on small scales for the fre-
quent lightning category is larger than for the other
two categories. This is due to the presence of a
larger number of small scale events in the frequent
lightning category, isolated by thresholding the light-
ning occurrence with a higher threshold (e3) than the
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Figure 7: Percentages of the squared energy scale
components and percentages ratio for the case study
illustrated in Figures 3, 4 for the three categories of
any lightning, from occasional to extreme lightning
and frequent lightning.



other two categories (0 and 0 � 5). Vice-versa, as the
scale increases, the fraction of squared energy on
large scales for any lightning or occasional to ex-
treme lightning becomes larger than for the frequent
lightning category. This is due to the presence of
large scale features in the probability forecast and
observation frequency images for this two categories
because defined from a low threshold on lightning
occurrence. The same argument applies when ex-
plaining the similar behavior of the percentage of the
squared energy for the categories of occasional to
extreme lightning and any lightning. However, the dif-
ference in the statistical behaviors for these two cat-
egories are less remarkable than the one between
these and the frequent lightning category.

The ratio of the fraction of the squared en-
ergy scale components for forecast and observation
measures the differences in the scale structure rep-
resentation of the forecast probability and observa-
tion frequency images. Such a ratio is shown in
the bottom panel of Figure 7 for the case study il-
lustrated in Figures 3, 4 for the three categories of
any lightning, from occasional to extreme lightning
and frequent lightning. All the three categories ex-
hibit a large value at the largest scale due, as al-
ready explained, to the overall over-forecast. For the
two categories of any lightning and from occasional
to extreme lightning, the observed scale structure
are not too badly reproduced (scales 3,4 and 5 are
slightly under-forecast, as previously diagnosed, and
the other scales are slightly over- or under-forecast,
but the ratio does not depart too much from one, in-
dicating good representation of the scale structure).
For the category of frequent lightning, small scales
(scales 1, 2 and 3, corresponding to 20, 40 and
80 km scale features) in the forecast contribute in
smaller proportion to the total squared energy than
in the observation. On the other hand, larger scales
(scales 4, 5, 6, 7 and 8, corresponding to 160, 320,
640, 1280 and 2560 km scale features) contribute in
a larger proportion to the total squared energy than in
the observation.This shows that the forecast for the
category of frequent lightning is smoother than the
observation.

3.5 Brier Score decomposition on dif-
ferent scales

The Brier Score (BS; see Brier, 1950) for each light-
ning probabilistic forecast versus its corresponding
observed frequency image is given by:

BS � �
Y � X � 2 � Z2 � (9)

any occ/ex freq
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Figure 8: Brier score for the case study illustrated
in Figures 3, 4 for the three categories of any light-
ning, from occasional to extreme lightning and fre-
quent lightning.

where Z � Y � X is the probability error image. The
Brier score measures the forecast error. The Brier
score for a perfect forecast is equal to zero. Fig-
ure 8 shows the Brier score for the case study il-
lustrated in Figures 3, 4 for the three categories of
any lightning, from occasional to extreme lightning
and frequent lightning. The Brier score is larger for
the categories of any lightning and from occasional
to extreme lightning and smaller for the category of
frequent lightning. This implies that the former cat-
egories have a larger error than the latter. However,
the Brier score is highly dependent on the sample cli-
matology, i.e. the error is proportional to the amount
of events present in the forecast and observation.
Therefore the apparent better performance of the fre-
quent lightning category deduced from its smaller er-
ror in Figure 8 is in reality due to the fact that this
category has a smaller sample climatology with re-
spect to the other two categories, as shown in Figure
5. The Brier score is not suitable to compare the
performance of forecasts with significantly different
sample climatologies; a more fair comparison can be
provided by the Brier skill score (see following sec-
tions).

The Brier score on each spatial scale is defined
as the Brier score of the scale component of each
lightning probabilistic forecast and its corresponding
scale component of the observed frequency image:

BS j �m � �
Yj �m � X j �m � 2 � j � 1 � J

BSJ � f �
�
YJ � f � XJ � f � 2 �

(10)

The Brier score components on each spatial scale
provide feedback on the amount of forecast error
that each scale exhibits, separately. Figure 9 shows
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Figure 9: Brier score scale components for the case
study illustrated in Figures 3, 4 for the three cate-
gories of any lightning, from occasional to extreme
lightning and frequent lightning.

the Brier score scale components for the case study
illustrated in Figures 3, 4 for the three categories
of any lightning, from occasional to extreme light-
ning and frequent lightning. As for the squared en-
ergy (Figure 6), small scales exhibit the largest error
and then the error decreases as the scale increases.
Note again that the category of frequent lightning ex-
hibits a smaller error on all the scales with respect
to the other two categories; this is not due to bet-
ter performance, but to the presence of less events
in the forecast and observation for this category (in
fact this category exhibits smaller sample climatol-
ogy and smaller squared energy on all the scales, as
shown in Figures 5 and 6). The same argument ap-
plies to the categories of occasional to extreme light-
ning and any lightning, however the differences in
their behavior are less remarkable. The error is pro-
portional to the proportion of events on each scale.

3.6 Brier score percentage for each
scale

The sum of the Brier score components on different
scales defined by Eqn. (10) is equal to the total Brier
score given by Eqn. (9). In fact, the probability er-
ror image can be decomposed as the sum of com-
ponents on different scales by using the 2D discrete
Haar wavelet filter:

Z �
J

∑
j � 1

Z j �m � ZJ � f (11)

(the notation used here is the same as for Eqns.
(1) and (2) for the wavelet decomposition of forecast
probability and observed frequency images). The

wavelet decomposition is a linear operator, therefore

Z j �m � �
Y � X � j �m � Yj �m � X j �m �

ZJ � f �
�
Y � X � J � f � YJ � f � XJ � f � (12)

and so it follows

BS j �m � Z2
j �m � BSJ � f � Z2

J � f � (13)

Moreover, the wavelet components obtained from a
discrete wavelet transform are orthogonal, therefore

Z j �mZk �m � 0 � �
j �� k;

Z j �mZJ � f � 0 �
(14)

From Eqns. (9), (11), (14) and (13) it is shown that
the Brier score is equal to the sum of its components
on different spatial scales:

BS � �
Z � 2 � �

∑J
j � 1 Z j �m � ZJ � f � 2 ��

∑J
j � 1 Z j �m � ZJ � f �

�
∑J

j � 1 Z j �m � ZJ � f � �
∑J

j � 1 Z2
j �m � Z2

J � f � ∑J
j � 1 BS j �m � BSJ � f �

(15)

This result enables one to evaluate the percentage
for which each scale contributes to the total Brier
score:

BS%
j �m � BS j �m � BS;

BS%
J � f � BSJ � f � BS �

(16)

The percentage of Brier scores on each scales pro-
vides feedback on the fraction of error that each
scale carries. Figure 10 shows the percentages of
the Brier score scale components for the case study
illustrated in Figures 3, 4 for the three categories of
any lightning, from occasional to extreme lightning
and frequent lightning. As for the Brier score (Fig-
ure 9), small scales exhibit the largest percentage of
error and then the error decreases as the scale in-
creases. However, the behavior of the frequent light-
ning category is better shown by Figure 10 than Fig-
ure 9. In fact, the Brier score components shown in
Figure 9 do not reveal really the frequent lightning
category error behavior, since this error is so small
when compared to the other two category errors (be-
cause of the Brier score dependence on the sample
climatology) that it is barely noticeable. On the other
hand, the Brier score percentages shown in Figure
10 show how much each scale contributes to the to-
tal error as a fraction of the total, which is equal for all
three categories. These percentages are indepen-
dent from the total error itself or from the sample cli-
matology and enable a more direct comparison of the
error structure for the three probability categories.

Note that, as for the percentage of the squared
energy (Figure 7), the fraction of error on small



1 2 3 4 5 6 7 8

% of Brier Score on scale j

scale

 
0

10
20

30
40

any
occ/ex
freq

Figure 10: Percentages of the Brier score scale com-
ponents for the case study illustrated in Figures 3, 4
for the three categories of any lightning, from occa-
sional to extreme lightning and frequent lightning.

scales for the frequent lightning category is larger
than for the other two categories. This is due to the
presence of a larger number of small scale events in
the frequent lightning category, isolated by threshold-
ing the lightning occurrence with a higher threshold
(e3) than the other two categories (0 and 0 � 5). Vicev-
ersa, as the scale increases, the fraction of error on
large scales for any lightning or occasional to ex-
treme lightning is larger than for the frequent lightning
category. This is due to the presence of large scale
features in the probability forecast and observed fre-
queency images for this two categories because de-
fined from a low threshold on ligthning occurrence.
The error is proportional to the proportion of events
on each scale. The same argument applies when
explaining the similar behaviour of the percentage of
the Brier Score for the categories of occasional to ex-
treme lightning and any lightning. However, the dif-
ferences in the statistical behaviour of these two cat-
egories are less remarkable than the one between
these and the frequent lightning category, because
of the less remarkable difference in the amount of
events (squared energy) present on each scale (see
Figures 6 and 7).

3.7 Scale decomposition of the Brier
skill score

To assess the lightning probability forecast skill,
the Brier skill score versus climatology (Jolliffe and
Stephenson, 2003, chapter 7) is evaluated:

BSS � BS � BSref

BSperf � BSref
� 1 �

BS

σ2
X

� (17)

any occ/ex freq
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Figure 11: Brier skill score for the case study illus-
trated in Figures 3, 4 for the three categories of any
lightning, from occasional to extreme lightning and
frequent lightning.

where BSperf � 0 is the Brier score for a perfect fore-
cast, and BSref � BSclim is the Brier score one would
obtain by forecasting for each pixel in the forecast
image the sample climatology (Y � X). Note that the
climatological forecast Brier score is equal to the ob-
servation variance:

BSclim � �
X � X � 2 � σ2

X � (18)

The Brier skill score for a perfect forecast is equal to
one; when the skill is positive the forecast performs
better than the climatological forecast, when nega-
tive the forecast performs worse. Figure 11 shows
the Brier skill score for the case study illustrated in
Figures 3, 4 for the three categories of any light-
ning, from occasional to extreme lightning and fre-
quent lightning. The skill is negative for all the cate-
gories, indicating that the lightning probabilistic fore-
cast performs worse than the climatological forecast
Y � X . The skill for the category of frequent lightning
is worse than for the other two categories.

Variance and squared energy are related by

σ2
X � �

X � X � 2 � X2
� X

2
(19)

so that the variance is equal to the difference be-
tween the squared energy and the square of the av-
erage field value. The average field value is equal
to the largest father wavelet component (see Ap-
pendix), therefore

X
2 � X2

J � f � X2
J � f � En2 � XJ � f � � (20)

From this result and Eqns. (19), (3), (7) and (5) we
can express the variance as a sum of components
on different scales

σ2
X � X2

� X
2 � En2 � X � � En2 � XJ � f �	�

∑J
j � 1 En2 � X j �m �	� ∑J

j � 1 X2
j �m �

(21)



where each scale component of the variance is equal
to the mother wavelet component of the squared en-
ergy:

σ2
X � j � X2

j �m � En2 � X j �m � � (22)

Note that mother wavelets have zero integral; there-
fore, each mother wavelet component X j �m has zero
mean; the variance of a field with zero mean is equal
to its squared energy; therefore, the definition of
scale component of the variance given in Eqn. (22)
is identical to defining the scale component of the
variance as the variance of each spatial scale com-
ponent of the field:

σ2
X � j � σ2

X j � m
� (23)

The scale component of the variance corresponding
to the largest father wavelet component XJ � f � X is
zero, since it is the variance of a constant field.

The Brier skill score components on different
spatial scales are defined from the Brier score com-
ponents on different scales given by Eqn. (10) and
the observation variance components on different
scales given by Eqn. (22):

BSS j � 1 �

BS j �m
σ2

X � j
� j � 1 � � � ��� J � (24)

The Brier skill score components on the different
scales measure the skill of the forecast at each scale;
BSS j is equal to one for perfect skill; BSS j is positive
when the forecast performs better than the climato-
logical forecast, and it is negative when the forecast
performs worse than the climatological forecast (no
skill). Figure 12 shows the Brier skill score compo-
nents on the different scales for the case study illus-
trated in Figures 3, 4 for the three categories of any
lightning, from occasional to extreme lightning and
frequent lightning. For all three categories, the skill
is negative on small and intermediate scales (1 to
5, corresponding to 20 to 320 km scale features),
and it becomes positive only on very large scales
(640 km and larger features). The negative skill is
due mainly to feature displacements. Positive skill on
scales larger than 640 km indicates that large scale
features, such as frontal systems, are detected by
the lightning probabilistic forecast. The category of
frequent lightning exhibits a particularly negative skill
at the scale 5, corresponding to 320 km features.
This is due partially to the smoothing and overfore-
casting of such features and to dispacement error on
this scales, whcih can be noticed directly from Fig-
ures 3, 4.
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Figure 12: Brier skill score components on the differ-
ent scales for the case study illustrated in Figures 3,
4 for the three categories of any lightning, from occa-
sional to extreme lightning and frequent lightning.

4 DISCUSSION AND CONCLUSIONS

A new diagnostic verification technique for probabilis-
tic forecasts defined on a spatial domain has been in-
troduced in this work. The method provides feedback
on the forecast performance and nature of the fore-
cast error on different scales. It measures error, skill
and bias on different scales. Moreover, the method
is capable of verifying the ability of the forecast to
reproduce the observed scale structure.

The verification technique has been tested us-
ing a case study of the CMC lightning probabilistic
forecasts. Three probability categories for any light-
ning, occasional to extreme lightning and frequent
lightning have been assessed. Forecast and obser-
vation are decomposed into the sum of components
on different spatial scales by performing a 2D Haar
wavelet decomposition. Brier score and Brier skill
score are then evaluated on each scale, along with
squared energy percentages and bias.

The decomposition of the Brier score on dif-
ferent scales revealed that the largest error is as-
sociated with the smallest scales. As the scale in-
creases the error decreases. The fraction of the error
for more intense lightning activity is larger on small
scales and smaller on large scales compared to the
fraction of the error for less intense lightning activ-
ity. The error is strongly related to the number of
events present in the forecast and observation image
on each scale.

The Brier skill score on different scales shows
that only very large scales (larger than 640 km) have
positive skill. This indicates that only very large scale
features (such as fronts) are correctly forecast. In
the case study considered, the forecast for intense



lightning activity exhibits a particular negative skill at
the 320 km resolution scale, due to overforecasting
(caused by smoothing) and displacement of features
on this scale.

The squared energy bias and the its percent-
age on each scale show that the forecast exhibits
an overall over-forecast, detected by the larger (fa-
ther wavelet) scale component. The categories of
any lightning and the occasional to extreme lightning
under-forecast on all the scales, in particular on the
80, 160 and 320 resolution scales. The ratio of the
squared energy percentages reveals that the scale
structure is well represented by these two forecast
categories. The forecast of frequent lightning un-
derforecast small scales (features of 20 to 160 km
resolution) and overforecast large scales (in partic-
ular the 320 km resolution scale). The ratio of the
squared energy percentages reveals that the fore-
cast is smoother than the observation.

The technique still needs further development.
Reliability images can be obtained from the observed
frequency image and the forecast probability image.
Brier score and skill score reliability and resolution
components can then be decomposed on different
scales. Furthermore the technique needs to be
tested on a larger number of case studies and on
monthly runs. Verification statistics will be provided
with their associated confidence intervals. The veri-
fication technique should be tested also on different
probabilistic forecasts.

The technique enables the comparison of dif-
ferent forecasts on different spatial scales. This in-
cludes also forecasts on different resolutions. It is
very well known that high resolution forecasts, when
assessed with traditional verification techniques, per-
form dramatically worse than low resolution fore-
casts, due to their intrinsic high variability. The Brier
skill score decomposition introduced in this work is
defined on each scale by a normalization of the Brier
score by the scale variance. This enables a more fair
verification of forecasts on different scale resolutions.

APPENDIX: THE 2D DISCRETE HAAR
WAVELET FILTER

Wavelets are real function characterised by a loca-
tion and a scale (Daubechies, 1992; Mallat, 1989).
Similar to Fourier transforms, wavelets can be used
to represent a function as a sum of components on
different spatial scales, and therefore they can be
used to analyze the frequency structure of a signal or
the scale structure of a field. Because of their local
properties, wavelets are more suitable than Fourier

series for representing spatially discontinuous fields
such as lightning. Fourier expansions can describe
smooth functions, but when used for discontinuous
fields they lead to problematic Gibbs’ phenomena.
Moreover, because of their locality, wavelets are
more efficient than Fourier components at represent-
ing sparse images containing few non-zero values.
For these reasons, in this study wavelets are used
rather than Fourier expansions.

Different types of wavelets exist. Each wavelet
type is defined by a mother and a father wavelet,
characterised by different shapes and mathematical
properties (e.g. smoothness, symmetry, etc.). When
performing a wavelet decomposition, it is often de-
sirable to select a certain wavelet so as to gain from
the characteristics of the wavelet itself. As an exam-
ple, the wavelet chosen could be the one that min-
imises the number of significant wavelet coefficients
describing the decomposed function. The choice of
the “optimal” type of wavelet to be used to perform a
wavelet decomposition depends on the characteris-
tics of the function to be decomposed. In this work,
Haar wavelets are used, because of their square
shape which best deal with sharp discontinuities.
Figure 13 shows the one- and two- dimensional Haar
wavelets. Note that the two-dimensional wavelets
are generated simply as the Cartesian product of
one-dimensional wavelets.

A discrete wavelet family is a set of wavelets of
the same type generated from the mother and father
wavelets by a deformation and a translation. The de-
formation characterises the scale j of the wavelet: it
stretches the domain of the wavelet by a factor of 2 j

and reduces its amplitude by a factor of 2 � j
�
2 (this

is to maintain its L2 norm1 equal to one). Therefore,
wavelets on the scale j have a domain which is twice
as large as the domain of the wavelets on the spa-
tial scale j � 1, i.e. as the scale increases wavelets
are stretched by a factor of 2. The translation de-
termines the location of the wavelet in the domain:
wavelets of scale j is translated by a multiple of 2 j

units. For Haar wavelets this implies that wavelets of
the same spatial scale cover the whole domain and
their supports do not overlap.

A discrete wavelet family is an orthonormal ba-
sis for L2 ��� n ��� . Therefore, any function belonging
to L2 ��� n � (e.g. any function with finite values de-
fined on a discrete finite grid, such as any signal
or field with finite values stored in a computer data
set) can be expressed as a linear combination of

�

L2 ��� n 	 is defined as the set of functions f defined on � n
that satisfy 
�� f � 2  ∞; the L2 norm of a function f belonging to
L2 ��� n 	 is � 
�� f � 2 	 1 � 2; the inner product of two functions f and g
belonging to L2 ��� n 	 is � 
�� f g � 	 1 � 2.
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Figure 13: One- and two- dimensional Haar
wavelets. In the one-dimensional discrete Haar
wavelet decomposition of a real function, the mother
wavelet components are generated by the mother
wavelet shown in panel (a), the father wavelet com-
ponents are generated by the father wavelet shown
in panel (b). In two dimensions, the father wavelet
components are generated from the two-dimensional
Haar father wavelet shown in the panel (c). The
mother wavelet components are generated from the
two-dimensional Haar wavelets shown in the panels
(d), (e) and (f).

discrete wavelets of the same family, and therefore
as a sum of components on different spatial scales.
As for the Fourier series, the coefficient assigned to
each wavelet is equal to the integral of the absolute
value of the product of the function and the corre-
sponding wavelet (i.e. the L2 inner product1 of the
function and the corresponding wavelet). Note that
discrete wavelets are orthogonal (i.e. their L2 inner
product1 is zero), therefore the integral over the spa-
tial domain of the product of two different wavelets of
the same discrete family is equal to zero The spatial
scale components obtained from a discrete wavelet
decomposition are also orthogonal. Note also that
the discrete wavelet decomposition is a linear oper-
ator, i.e. the wavelet decomposition of a linear com-
bination of functions is the linear combination of the
wavelet decomposition of each function.

The 2D discrete Haar wavelet filter can be ex-
plained by an algorithm based on spatial averaging
over 2 j � 2 j pixel domains. In this work we illustrate
the two-dimensional Haar wavelet filter with this ap-
proach. The two-dimensional Haar wavelet filter is
applied to a spatial field Z defined over a spatial do-
main of 2J � 2J pixels.

The Haar wavelet filter at its first step decom-
poses the spatial field Z into the sum of a coarser
mean field (the first father wavelet component) and a
detail variation-about-the-mean field (the first mother
wavelet component). The father wavelet component
is obtained from the spatial field Z by a spatial aver-
aging over 2 � 2 pixels. The mother wavelet compo-
nent is obtained as the difference between the spatial
field Z and the father wavelet component.

At its second step the Haar wavelet filter de-
composes the father wavelet component obtained
from the first step into the sum of a coarser mean
field (the second father wavelet component) and
a detail variation-about-the-mean field (the second
mother wavelet component). The second father
wavelet component is obtained from the spatial field
Z by a spatial averaging over 4 � 4 pixels. The sec-
ond mother wavelet component is obtained as the
difference between the second father wavelet com-
ponent and the first father wavelet component.

The process is recursive and at each step the
Haar wavelet filter decomposes the father wavelet
component obtained from the

�
j � 1 � th step into

the sum of a coarser mean field (the jth father
wavelet component) and a detail variation-about-the-
mean field (the jth mother wavelet component). The
jth father wavelet component is obtained from the
spatial field Z by a spatial averaging over 2 j � 2 j

pixels. The jth mother wavelet component is ob-



tained as the difference between jth and
�
j � 1 � th

father wavelet components. The process stops when
the father wavelet component corresponding to the
largest scale (J) is found. The spatial field Z is de-
composed into the sum of the mother wavelet com-
ponents on the spatial scales j � 1 � � � � � J and the Jth

father wavelet component:

Z �
J

∑
j � 1

Z j �m � ZJ � f � (25)

where the mother Z j �m wavelet components on the
scale j have resolution equals to 2 j � 1 pixels and the
father wavelet component ZJ � f on the largest scale
J has resolution equal to 2J pixels. Note that the
largest (Jth) father wavelet component is equal to the
mean of Z over the whole 2J � 2J pixel spatial do-
main. Therefore

Z �
J

∑
j � 1

Z j �m � Z � (26)

where the overbar indicates averaging over all the
pixels in the domain.
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