P1.8 SENSITIVITY OF WRF/CHEM PREDICTIONS TO METEOROLOGICAL SCHEMES

Chris Misenis, Xiaoming Hu, Srinath Krishnan, and Yang Zhang* North Carolina State University, Raleigh, North Carolina

Jerome D. Fast Pacific Northwest National Laboratory, Richland, Washington

1. INTRODUCTION

Three-dimensional (3-D) atmospheric models are an important tool in studying meteorological variables and their impacts on chemical species. Understanding the effects of meteorological parameterizations on meteorological and chemical predictions of 3-D models is necessary to the use of appropriate parameterizations for simulating Performance of these different episodes. schemes may vary from episode to episode, and may be highly dependent upon the horizontal grid spacing and time resolution used. The accuracy of predicted meteorological variables (e.g., temperature (T), relative humidity (RH), wind speed and direction, and planetary boundary layer (PBL) height) is a prerequisite for accurate predictions of chemical species and depends on the performance of meteorological parameterizations.

Operating online, the Weather Research and Forecasting/Chemistry (WRF/Chem) model uses the state of the science WRF meteorological model and integrates the simulation of chemical species formation and transport simultaneously with meteorological predictions. The objectives of this study are to examine the simulated meteorological variables using different combinations of land-surface models (LSMs) and planetary boundary layer (PBL) parameterizations, and the effects of the simulated meteorology on chemical predictions.

WRF/Chem offers several options for meteorological physics, as well as several gasphase mechanisms, and aerosol modules. Two options critical to WRF/Chem simulations are the LSM and PBL schemes. This study evaluates several well known meteorological schemes including two LSMs (the Noah (Ek et al., 2003) and slab soil (Dudhia, 1996) and two PBL schemes (the Yonsei University (YSU) (Hong and Dudhia, 2003) and Mellor-Yamada-Janjic (Mellor and Yamada, 1982; Janjic, 1994) (MYJ) PBL schemes). The Noah LSM is a popular scheme developed jointly by the National Center for Prediction. Environmental Oregon State University, the Air Force, and the Hydrologic The five-layer slab soil model Research Lab. provides an improvement to the two-layer scheme used in MM5. Both the YSU and MYJ PBL parameterizations turbulence schemes are commonly employed in several operational The MYJ is a PBL meteorological models. scheme that explicitly defines turbulent quantities, using a conservation of turbulent kinetic energy (TKE). The YSU scheme, however, is a modification of the Medium Range Forecast (MRF) PBL scheme, using an explicit treatment of entrainment rather than implicit. The MYJ scheme defines the PBL height using TKE, while the YSU scheme is dependent upon the bulk Richardson number.

2. DOMAIN AND MODEL CONFIGURATION

WRF/Chem is applied with a 12-km horizontal grid spacing for a 5-day (28 August through 2 September 2000) episode from the Texas Air

Figure 1. Map of WRF/Chem simulation domain for 28 August - 2 September 2000 TexAQS-2000 episode.

^{*}Corresponding author address: Yang Zhang, Department of Marine, Earth and Atmospheric Sciences, Campus Box 8208, NCSU, Raleigh, NC 27695; e-mail: yang_zhang@ncsu.edu

Quality Study 2000 (TexAQS-2000) in the southern U.S. The domain for this study centers on the Houston-Galveston area in eastern Texas, as shown in Figure 1.

The chemistry used in this study consists of the Second Generation Regional Acid Deposition Model (RADM2) gas-phase mechanism (Stockwell et al., 1990), the Modal Aerosol Dynamics Model (MADE) with the Secondary Organic Aerosol Model (SORGAM)(Ackermann et al., 1998; Schell et al., 2001).

To examine the effects of different meteorological schemes on chemical simulations, a base simulation with the Noah LSM coupled with the YSU PBL scheme (hereafter referred to as SOR_NOAH) is conducted to provide a benchmark to two sensitivity simulations in which

Figure 2. Temporal distributions of (a) T, (b) RH, (c) wind speed, and (d) wind direction at Deer Park, Texas; and (e) PBL height at LaMarque, Texas during 28 August - 2 September, 2000.

different combinations of meteorological schemes are used. The slab LSM and the YSU PBL scheme are used in the first sensitivity simulation and the Noah LSM and MYJ PBL scheme are used in the second sensitivity simulation (hereafter referred to as SOR_SLAB and SOR_TKE, respectively).

3. MODEL EVALUATION

3.1 Meteorological Variables

The meteorological predictions of WRF/Chem are compared against observations from TexAQS-2000. The analysis consists mainly of temporal and statistical analysis. Figure 2 shows the temporal distributions of temperature, wind speed and direction, and RH at Deer Park, Texas and PBL height at LaMarque, Texas, a location with observations near Deer Park. The predicted meteorological variables correspond well with observed values for the first two days at most locations, especially in the case of temperature and RH. During days three through five, model deviations grow significantly away from observed values for all simulations. This can be attributed to the lack of a data assimilation system in the version of WRF used here, which is currently under development. In general, each model simulation underpredicts the daily maximum temperature. The SOR NOAH simulation overpredicts nighttime temperatures at most locations, while SOR SLAB shows a general underprediction at nearly all times during days three through five. The SOR_SLAB simulation also gives RH more accurately than SOR TKE and SOR NOAH, as the latter two grossly underpredict nighttime values by up to 58% of the All three observed value during days 3-5. simulations reproduce the observed wind speed relatively well at all locations and during most hours. Overall, wind direction simulations showed significant deviations from observed values during nighttime hours. However, one limitation of evaluating wind directions is that because wind direction is a vector, the numeric values of differences between the observations and predictions may not reflect well the actual differences in wind rose plots when the numeric differences are greater than 180°. For example, at 6:00AM LST on August 29 at Deer Park, the observed wind direction is 11°, and the predicted wind directions from the three model runs range from 228.3° to 254.1°. The numerical differences range from 217.3° to 243.1°, whereas the actual differences on wind rose plots range from 142.7°

1A		T2			RH		PBL Height			
	NOAH	SLAB	TKE	NOAH	SLAB	TKE	NOAH	SLAB	TKE	
MeanObs	31.2	31.2	31.2	62.5	62.5	62.5	1089.3	1089.3	1089.3	
MeanMod	30.9	28.9	29.9	45.2	66.2	52.6	1519.4	1288.6	913.4	
Number	3502	3502	3502	795	795	795	203	203	203	
Corr	.88	.91	.91	.70	.75	.74	.66	.77	.64	
NMB (%)	-1	-7	-4	-28	6	-16	39	18	-16	
NME (%)	5	8	6	31	20	23	45	29	30	
1B	WSP				WDR					
	NOAH S		LAB	TKE	NOAH		SLAB		TKE	
MeanObs	2.9		2.9	2.9	21	C	210		210	
MeanMod	3		2.9	2.6	228	.5	223.7	223.7		
Number	3502	3	502	3502	339)1	3391		3391	
Corr	0.35	C).30	0.47	0.4	6	0.40		0.46	
NMB (%)	3		-1	-12	9		7		7	
NME (%)	0.42	C).42	0.37	0.2	1	0.23		0.21	

Table 1. Performance statistics for T at 2-meter height (T2), RH, PBL height (1A) and wind speed and direction (1B).

to 116.9°, respectively. For PBL height predictions at most locations, both SOR_NOAH and SOR SLAB overpredict values for day one at all During days two through five, locations. SOR TKE and SOR_SLAB give a closer agreement to the observed PBL heights, with SOR_TKE showing a slight overprediction and SOR_NOAH showing consistent overprediction during most time periods. All simulations, however, represent the early development of the PBL height relatively well at all locations. Temporal analyses also show that model discrepancies grow significantly larger during days three through five, mainly because of the lack of a data assimilation system in WRF, as mentioned previously.

Several statistical metrics suggested by Yu et al. (2003) are calculated to evaluate overall model performance. Tables 1A and 1B show several statistical parameters for meteorological predictions. In terms of normalized mean bias (NMB), the SOR SLAB simulation gives better performance than SOR_NOAH and SOR_TKE for RH (5.8% vs. -27.8% and -15.9%) and wind speed (-0.5% vs. 2.6% and -12.2%). Both SOR_TKE and SOR_SLAB slightly outperform SOR_NOAH for wind direction (both 6.5% vs. 8.8%). Statistically, SOR_TKE predicts PBL height more accurately than SOR_NOAH and SOR_SLAB (-16.1% vs. 39.5% and 18.3%). The general underprediction of the MYJ scheme is generally consistent with results from past studies (e.g., Fast. 2005). Due to the implicit nature of the boundary layer depth in the YSU scheme, errors within variables used to calculate vertical motions can cause errors in simulated depths, whereas the MYJ scheme (which uses more complete physics)

seems to have less bias (Alapaty et al., 1996). However, as shown in Figure 2, SOR_SLAB may seem to outperform SOR_NOAH and SOR_TKE during days two through five, but the magnitude of the overprediction on day one dominates the overall statistical performance of the simulation. Because SOR_TKE is relatively closer to observations at all days, it shows less bias than SOR_SLAB, even though SOR_SLAB performs better on Days 4-5. SOR_NOAH, though, outperforms SOR_SLAB and SOR_TKE at forecasting temperature (-1.1% vs. -7.4% and -4.1%).

3.2 Chemical Species

The model chemical predictions are also evaluated using observed chemical data taken from the TexAQS-2000. The mixing ratios of O_3 and CO, as well as the concentrations of fine particulate matter (PM_{2.5}) and sulfate (SO₄²⁻) are the initial foci of our analyses. Temporal and statistical analyses are conducted (where data were available), along with an intercomparison among three sets of model results.

Figure 3 shows the temporal distribution of chemical species at Deer Park, Texas. For O_3 , all three model simulations predict daytime concentrations relatively well, with the exception of some sites (as shown in Figure 3 at Deer Park) where deviations are 41-52% less than the maximum observed values on days 3-4. Each simulation significantly overpredicts nighttime concentrations, by as much as 200% of the observed value in some cases. Of the three simulations, however, SOR_TKE more adequately replicates nighttime O_3 , with the lowest NMB.

Analyses of the CO plot shows that SOR_TKE gives mixing ratios that are closer to the observations than the other two simulations. One possible explanation for this is that SOR_TKE gives lower PBL heights on days 1-3 than SOR_NOAH and SOR_SLAB, which allows less volume for CO to mix out. Large model deviations exist for CO predictions during nighttime. At night, the MYJ scheme simulates a shallower boundary layer, which would explain the higher predictions of CO during nighttime by SOR_TKE. For PM_{2.5} and SO4²⁻, the results from the three

model simulations are quite similar during most time periods. At most locations, SO_2 concentrations predicted by SOR_SLAB are greater than those predicted by either SOR_NOAH or SOR_TKE, which leads to higher predicted SO_4^{2-} concentrations. Relatively minor differences among model simulations exist for $PM_{2.5}$ with the exception of higher simulated daily maximum values by the SOR_SLAB simulation.

Table 2. Performance statistics for predictions of O₃, CO, NO, NO₂, and PM_{2.5}.

O ₃	Daytime			Nighttime			Daily			
	NOAH	SLAB	TKE	NOAH	SLAB	TKE	NOAH	SLAB	TKE	
MeanObs	54.5	54.5	54.4	24.8	24.8	24.8	39.4	39.4	39.4	
MeanMod	58.7	59.7	57.1	46.2	48.1	33.9	52.1	53.6	45	
Number	3270	3270	3270	3139	3139	3139	6123	6123	6123	
Corr	.62	.57	.63	.61	.54	.60	.70	.60	.70	
NMB (%)	8	9	5	87	94	37	30	40	10	
NME (%)	28	30	29	93	101	59	50	40	40	
со	Daytime			Nighttime			Daily			
	NOAH	SLAB	TKE	NOAH	SLAB	TKE	NOAH	SLAB	TKE	
MeanObs	390.4	390.4	390.4	433.6	433.6	433.6	411.8	411.8	411.8	
MeanMod	257.8	309.5	343.4	236.3	273.5	338.7	247.1	291.6	341.1	
Number	667	667	667	658	658	658	1325	1325	1325	
Corr	.13	.17	.17	.04	.06	.07	.10	.10	.10	
NMB (%)	-34	-21	-12	-46	-37	-22	-40	-30	-20	
NME (%)	52	54	58	59	58	61	60	60	60	
NO	Daytime			Nighttime			Daily			
	NOAH	SLAB	TKE	NOAH	SLAB	TKE	NOAH	SLAB	TKE	
MeanObs	3.6	3.6	3.6	11.7	11.7	11.7	7.5	7.5	7.5	
MeanMod	3.1	3.5	5.2	.02	.02	.08	1.6	1.8	2.8	
Number	395	395	395	363	363	363	758	758	758	
Corr	.36	.36	.57	.29	.32	.27	07	07	02	
NMB (%)	-13	-4	45	-100	-100	-99	-78	-76	-63	
NME (%)	79	83	100	100	100	99	94	96	99	
NO	Daytime			Nighttime			Daily			
1102	NOAH	SLAB	TKE	NOAH	SLAB	TKE	NOAH	SLAB	TKE	
MeanObs	11.9	11.9	11.9	14.7	14.7	14.7	13.2	13.2	13.2	
MeanMod	13.3	16.1	18.0	29.5	32.4	40.4	21.0	23.9	28.7	
Number	805	805	805	730	730	730	1535	1535	1535	
Corr	.32	.31	.32	.17	.21	.21	.28	.30	.30	
NMB (%)	12	36	52	100	120	170	89	80	120	
NME (%)	84	98	1.04	130	140	190	110	120	150	
PM _{2.5}	Daytime			Nighttime			Daily			
	NOAH	SLAB	TKE	NOAH	SLAB	TKE	NOAH	SLAB	TKE	
MeanObs	10.3	10.3	10.3	10.4	10.4	10.4	10.3	10.3	10.3	
MeanMod	14.1	15.3	16.2	11.1	12.1	12.2	12.7	13.8	14.3	
Number	886	886	886	811	811	811	1697	1697	1697	
Corr	0.26	0.33	0.37	0.16	0.18	0.2	0.2	0.3	0.3	
NMB (%)	36	48	56	7	17	18	20	30	40	
NME (%)	66	70	74	51	54	54	60	60	60	

For SO₄²⁻, SOR_TKE simulates values 25-30% higher than SOR NOAH or SOR SLAB on day 1 at most locations (as seen in Figure 3). while SOR SLAB simulates higher maximum concentrations by near 50% at most locations for days 4-5. The simulation results with SOR NOAH are similar to those of SOR TKE at most locations. Table 2 shows the performance statistics for O₃, CO, NO, NO₂, and PM_{2.5} for daytime and nighttime, as well as daily values. For hourly predictions throughout a day, SOR TKE performs better for O_3 (14.3% vs. 32.3% and 36.0%) and CO (-17.2% vs. -40.0% and -29.2%) mixing ratios in terms of NMB as compared to SOR NOAH and SOR SLAB. SOR NOAH performs better for PM₂₅ than SOR_SLAB and SOR_TKE (22.4% vs. 33.3% and 38.0%). While all model simulations reproduce observed daytime O₃ mixing ratios reasonably well (with NMBs of 5-9%), they all significantly overpredict nighttime O₃ mixing ratios (with NMBs of 37-94%). This can be partially attributed to the significant underprediction of nighttime NO (as a result of overprediction of mixing at night), which titrates less amounts of O₃ in the nocturnal PBL. While the CO mixing ratios during some time periods (e.g., 7:00AM to 10:00AM LST on days 1-5) are overpredicted, those during other periods are underpredicted. The underpredictions dominate, resulting in a net negative bias. While NO mixing ratios are significantly underpredicted (by 63-78%), NO₂ mixing ratios are significantly overpredicted (80-120%), with much larger deviations occurring at night for both species. In addition to inaccuracies in the meteorological predictions, the equilibrium assumption made in simulating nitrogen chemistry in the RADM2 gasphase mechanism may not represent the ambient conditions simulated for this particular episode, which may contribute to the larger model biases for NO_x predictions. An interesting observation is that each model shows a lower NMB during daytime simulations of O3, CO, NO and NO2, but daytime biases for PM_{2.5} are higher than those at night. While the secondary PM species may have been well reproduced during daytime, the larger uncertainties may be likely due to the uncertainties in the emissions of primary PM species such as BC and OM. Among the three model simulations, SOR TKE gives the best performance for O_3 , CO, and NO, and SOR_NOAH gives the best performance for NO₂ and PM_{2.5}. It is noted that differences between observations and model predictions from the three simulations are larger than differences among model results. This indicates that uncertainties other than meteorology

(e.g., emissions) may also be important factors for the discrepancies between observations and predictions.

4. SUMMARY

Our evaluation has shown, for this particular episode, that meteorological schemes play an important role in the simulation of chemical species. It appears that the use of different PBL parameterization and land-surface schemes affects chemical predictions for this scenario. When comparing the performance of the models in terms of meteorological variables and chemical species, the SOR SLAB simulation performs better in terms of temporal and statistical analyses than either SOR_NOAH or SOR_TKE, with the exception of SOR NOAH predicting surface temperature more accurately. Although SOR_SLAB gives better meteorological predictions, SOR_TKE performs better than SOR NOAH and SOR_SLAB for O3 and CO predictions. A better representation of daytime

Figure 3. Temporal distributions of (a) O_3 , (b) CO, (c) $SO_4^{2^\circ}$, and (d) $PM_{2.5}$ at Deer Park, Texas, during 28 August - 2 September 2000 (Observed $SO_4^{2^\circ}$ data was not available during this time period).

and nocturnal PBL heights by the TKE PBL scheme gives better predictions for primary species such as CO and NO (higher than those predicted by the YSU scheme). Compared to SOR_NOAH, higher NO mixing ratios predicted by SOR_TKE titrate more O_3 at night, resulting in a lower NMB in nighttime O_3 predictions (and thus overall O_3 predictions because of the dominancy of the nighttime NMB). For NO₂ and PM_{2.5}, SOR_NOAH gives the best overall performance.

A strong correlation has typically been considered between temperature and mixing ratios An interesting finding of this study, of O_3 . shows that better temperature however, predictions do not necessarily give a better O₃ performance. While SOR NOAH simulates temperature more accurately than either SOR_SLAB or SOR_TKE, its O₃ performance is not as good as that of SOR_TKE (with a NMB of 32.3% and 14.3%, respectively). This is because the O₃ performance for this episode is dominated by the poor O_3 performance at night, rather than daytime. The poor O_3 performance at night by SOR NOAH is due partially to the fact that the YSU scheme gives poorer representation of the nocturnal PBL than the TKE scheme.

Further study is necessary to fully understand the impacts of meteorological variables on the formation and transport of chemical species and all major likely causes for the discrepancies in meteorological and chemical predictions with different meteorological schemes.

Acknowledgements

This work is performed under the National Science Foundation Award No. Atm-0348819 and the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) and under agreement number DW13921548. The authors thank Dr. Georg Grell for providing NOAA's version of WRF/Chem; Mr. Mark Estes of TCEQ, TX for providing some observational data; Dr. Shaocai Yu, U.S. EPA/NOAA, for providing FORTRAN script for statistical calculations; Danny Hamilton of NCSU for his assistance in model and observational data processing; and Drs. Eric Sills and Gary Howell, NCSU HPC, for computational guidance.

5. REFERENCES

Alapaty, K., J. E. Pleim, S. Raman, D. S. Niyogi, and D. W. Byun, 1996: Simulation of atmospheric processes using local- and nonlocal-closure schemes, *J. Appl. Meteor.*, **36**, 214-233.

- Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar, 1998: Modal aerosol dynamics model for Europe: Development and first applications, *Atmos. Env.*, **32**, 2981-2999.
- Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, *Sixth PSU/NCAR Mesoscale Model Users' Workshop*, 49-50.
- Ek, M. B., K. B. Mitchell, Y. Lin, B. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108(D22), 8851.
- Fast, J. D., 2005: Evaluation of the boundary layer characteristics and pollutants in Mexico City predicted by WRF. 6th Annual WRF / 15th Annual MM5 Users' Workshop, Boulder, CO.
- Hong, S.-Y., and J. Dudhia, 2003: Testing of a new non-local boundary layer vertical diffusion scheme in numerical weather prediction applications. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA.
- Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous layer, and turbulence closure schemes. *Mon. Wea. Rev.*, **122**, 927-945.
- Mellor, G. L., and T. Yamada, 1982: Development of turbulence closure model for geophysical fluid problems. *Rev. Geophys. Space Phys.*, 20, 851-875.
- Schell, B., I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel, 2001: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. *J. Geophys. Res.*, **106**, 28275-28293.
- Stockwell, W. R., P. Middleton, J. S. Chang, and X. Tang, 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. *J. Geophys. Res.*, **95**, 16343-16367.
- Yu, S., B. Eder, R. Dennis, S.-H. Chu, and S. Schwartz, 2003: New unbiased symmetric metrics for evaluation of the air quality model.
 2nd Annual CMAS Models-3 User's Conference, Research Triangle Park, NC.