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1. INTRODUCTION

An outstanding problem in storm-scale numerical
prediction is the determination of useful methods to com-
pare high resolution spatial fields, such as comparing
forecast and observations or multiple analyses resulting
from an ensemble system. Recent development of
meaningful, objective methods for comparing gridded,
high-resolution forecasts that contain realistic detail to
observations has focused primarily on ways of evaluat-
ing the “realism” of forecasts, following suggestions
made by Anthes (1983). One such general method
involves the comparison of measures related to the
structure of detailed fields, such as Fourier power spec-
tra (e.g., Skamarock 2004; Harris et al. 2001; Zepeda-
Arce et al. 2000). Another potentially useful suggestion
involves the comparison of characteristics of specific
meteorological phenomena, often called the “object-ori-
ented” approach (e.g. Ebert and McBride 2000;
Nachamkin 2004; Case et al. 2004). Examination of the
spatial distribution of errors along with their significance
has also been considered (Elmore et al. 2005).

In this poster, several objective techniques will be
applied to high-resolution, detailed meteorological fields.
Two types of ensemble model forecasts/analyses were
generated using data from the 8-9 May 2003 central
plains tornado outbreak. First is an ensemble Kalman fil-
ter analysis and forecast using a 25 member ensemble
covering the central plains. Six-hour, high resolution
(2km horizontal resolution) forecasts are employed to
explicitly predict the convective evolution. The high reso-
lution runs are generated from an EnKF data assimila-
tion of surface data using the MM5 model at 30 km
resolution. Predicted and observed radar reflectivities
and will be compared.

A second perspective analyzes the details of one
individual storm. High resolution Doppler and reflectivity
data from the NSSL KOUN data are used to create an
EnKF analysis of the 8 May 2003 Oklahoma City
(Moore) tornadic storm. An ensemble of 49 cloud model
forecasts at 500m grid spacing are compared to a “verifi-
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cation” run. This verification array is obtained from a 1
km grid spacing run of the same cloud model, interpo-
lated to 500 m (Fig. 1). This comparison will allow us to
test a variety of procedures for comparing gridded fore-
casts and verification analyses at cloud-resolving grid
spacings.

2. OBJECT-ORIENTED VERIFICATION FRAMEWORK

In general, the framework for object-oriented verifi-
cation consists of three basic steps: object identification,
characterization, and comparison. To complete the first
step in this process, specific meteorological phenomena
must be located and identified using weather-related
information. The object-identification process could be
performed manually (e.g., Smith and Mullen 1993),
although such a process would usually involve consider-
able time and labor. Automated procedures for identify-
ing meteorological objects are necessary in order to
perform long-term verification studies and obtain com-
prehensive information on forecast performance. Crite-
ria for object identification must be established and
documented so that results can be duplicated by other
researchers. Such criteria will vary depending upon the
phenomena of interest. Results will also be sensitive to
the spatial and temporal scales that the meteorological
data can resolve, data analysis techniques, etc. Rou-
tines for identifying objects should not be a function of
both the observed and predicted fields, otherwise differ-
ent objects will be defined for different forecast systems,
making comparative verification infeasible. Examples of
automated object-identification procedures that have
been established in previous work include agglomerative
cluster analysis methods (Lakshmanan et al. 2003; Peak
and Tag 1994), as well as thresholding-type methods of
identifying sea breeze fronts (Case et al 2004), Mistral
wind storms (Nachamkin 2004), and contiguous rain
areas (Ebert and McBride 2000). In this work, the mete-
orological phenomena of interest are supercell thunder-
storms. An automated procedure for identifying
precipitating weather systems was developed by Bald-
win and Lakshmivarahan (2003). This automated proce-
dure identifies rainfall systems as connected regions of
precipitation through the use of image processing rou-
tines (Klette and Zamperoni 1996). The definition of



connected regions is relaxed to allow systems that are
situated very close together to be grouped as a single
precipitation system. This procedure was used as the
basis of an automated rainfall system classification pro-
cedure (Baldwin et al. 2005).

Once objects have been identified within the fore-
cast and observed meteorological data, the characteris-
tics of those objects must be extracted in order to
provide a useful description of each object. Meteorologi-
cal phenomena can be described by statistical character-
istics, properties, or attributes. Ideally, one would select
a set of attributes that can describe the most important
and discriminating aspects of an event in a concise fash-

ion. For example, the it forecast event could be
described by an attribute vector of m dimension f; =

(04,855 --o> X yi)T where x;, y; are the attributes associ-

ated with the spatial location of this event (perhaps lati-
tude and longitude), and o, B;,..., are attributes that

could be associated with the size, intensity, orientation,
continuity, intermittancy, etc., of the event. Of course,
observed events must be described with the same set of

attributes, for example, the vector describing the jth
observed event would contain o; = (o;,f;, ..., X y].)T.

In order to measure the accuracy of the forecast
and quantify the agreement between forecast and
observed events, the similarity between these vectors
can be measured. There are numerous possible choices
of similarity/dissimilarity measures, for example, the cor-
relation coefficient between f; and o; is an example of a

similarity measure, since the higher the correlation coef-
ficient is, the more similar f; and o;j are. Once the simi-

larity measure has been chosen, overall summary
verification scores or accuracy measures could then be
obtained. This approach to verifying events would be
analogous to the “measures-oriented” approach to verifi-
cation (Brooks and Doswell 1996). A more comprehen-
sive analysis of the verification information could also be
obtained by examination of the joint distribution of fore-
cast and observed events, dubbed the “distributions-ori-
ented” approach by Brooks and Doswell (1996). This
could be considered an extension to the verification
framework outlined by Murphy and Winkler (1987).

The current status and results from this ongoing
research will be presented at the conference.

References

Anthes, R. A., 1983: Regional models of the atmosphere in middle lati-
tudes. Mon. Wea. Rev.,, 111, 1306-1335.

Baldwin, M. E., and S. Lakshmivarahan, 2003: Development of an
events-oriented verification system using data mining and image pro-
cessing algorithms. Preprints, 3rd Conf. on Atrtificial Intelligence, Long
Beach, CA, Amer. Meteor. Soc., paper 4.6.

Baldwin, M. E., J. S. Kain, and S. Lakshmivarahan, 2005: Development
of an Automated Classification Procedure for Rainfall Systems Mon.
Wea. Rev., 133, 844-862.

Brooks, H.E. and C.A. Doswell lll, 1996: A comparison of measures-ori-
ented and distributions-oriented approaches to forecast verification.

Wea. Forecasting, 11, 288-303.

Case, J. L., J. Manobianco, J. E. Lane, C. D. Immer, F. J. Merceret,
2004: An objective technique for verifying sea breezes in high-resolu-
tion numerical weather prediction models. Wea. Forecasting 19, 690-
705.

Ebert, E.E. and J.L. McBride, 2000: Verification of precipitation in
weather systems: Determination of systematic errors. J. Hydrology,
239, 179-202.

Elmore, K. L., M. E. Baldwin, and D. M. Schultz, 2005: Field significance
revisited: Spatial bias errors in forecasts as applied to the Eta Model.
Mon. Wea. Rev., in press.

Harris, D., E. Foufoula-Georgiou, K.K. Droegemeier and J.J. Levit, 2001:
Multiscale statistical properties of a high-resolution precipitation fore-
cast. J. Hydromet., 2, 406-418.

Klette R. and P. Zamperoni, 1996: Handbook of image processing opera-
tors. John Wiley and Sons, 397pp.

Lakshmanan, V., R. Rabin, and V. DeBrunner, 2003: Multiscale storm
identification and forecast. J. Atm. Res., 67-68, 367-380

Murphy, A.H. and R.L. Winkler, 1987: A general framework for forecast
verification. Mon. Wea. Rev.,, 115, 1330-1338.

Nachamkin, J. E., 2004: Mesoscale verification using meteorological
composites. Mon. Wea. Rev., 132: 941-955.

Peak, J. and P. Tag: 1994, Segmentation of satellite weather imagery
using hierarchical thresholding and neural networks. J. Appl. Meteor.,
33, 605-616.

Skamarock, W. C., 2004: Evaluating Mesoscale NWP Models Using
Kinetic Energy Spectra. Mon. Wea. Rev. 132, 3019-3032.

Smith, B. B. and S. L. Mullen, 1993: An Evaluation of Sea Level Cyclone
Forecasts Produced by NMC's Nested-Grid Model and Global Spec-
tral Model. Wea. Forecasting, 8, 37-56.

Zepeda-Arce, J., E. Foufoula-Georgiou, and K.K. Droegemeier, 2000:
Space-time rainfall organization and its role in validating quantitative

precipitation forecasts. J. Geophys. Res., 105 (D8), 10,129-10,146.

Verification grid

(@)

Figure 1: Verification grid (a) and a sample member #20 (b) of the 49
member cloud model ensemble. 10 min forecast of reflectivity (dbZ) 1km
above ground, valid 2220 8 May 2003.



	Figure 1: Verification grid (a) and a sample member #20 (b) of the 49 member cloud model ensemble...

