
7.6 EXPANDING THE POWER OF AWIPS WITH PLUGINS

U. Herbert Grote*
NOAA Research - Earth System Research Laboratory, Boulder, CO

Mark McInerney

NWS, Silver Spring, MD

1. INTRODUCTION

The National Weather Service AWIPS
(Advanced Weather Information Processing
System) has been modified many times to
accommodate changes in user and data
requirements. Often, these changes were
implemented with little more than
modifications to tables, but others required
detailed knowledge of the software design to
properly modify the code. Over the years
these modifications, including the migration
to the Linux operating system, have
contributed to increasing the complexity of
the code and the size of some software
modules.

The objective of the work described herein
is to develop an approach that simplifies
development and integration of more
powerful new applications with AWIPS code.
These applications would be able to
generate manual graphics, create charts,
and display image data, and overlay them
appropriately on other data displayed on
AWIPS.

2. PLUGIN CONCEPT

Web browsers have used plugins for years
to add specific capability to the browser that
are not native to the browser application.
These plugins can be integrated easily by
downloading the desired software, executing
an install script, and usually restarting the
browser. The browser does not require the
plugin unless the user desires the specific
capability it provides. Another important
characteristic is that these plugins are
typically developed by various vendors and
usually not the developer of the browser.

* Corresponding author address: U. Herb
Grote, Earth Systems Research Laboratory,
325 Broadway, Boulder, CO 80305; e-mail:
U.Herb.Grote@noaa.gov

Extending this concept to AWIPS means
that developers outside of GSD (ESRL
Global Systems Division, formerly Forecast
Systems Laboratory) would be able to add
significant capabilities to AWIPS/D2D
without knowing the detailed internal design
of D2D. Furthermore, the integration of the
new feature would be as easy as placing the
code in a particular directory and restarting
AWIPS; otherwise known as plug-and-play.
This is a major departure from the current
approach where the developer is either on
the AWIPS development team or works
closely with key individuals to develop and
integrate the new capability.

3. AWIPS ENVIRONMENT

The D2D software has three fundamental
ways of adding display functionality to the
workstation: depictables, extensions, and
applications. Depictables are software
modules (objects) that generate the various
types of displays and are probably the most
complex modules to develop. They are part
of the core software and require links to
most of the AWIPS libraries. Examples of
depictables include radar, satellite, model
data, and station plot displays. Extensions
are interactive depictables that run as
separate system processes but are closely
tied to the D2D core software (Kelly, 1997).
Frequently used extensions are WarnGen,
Baselines, and Points. The most loosely
integrated software is D2D applications.
Applications can instruct D2D to load a
known display or create their own display in
a separate window, but they cannot modify
or edit information on the screen. An
example of a D2D application is the volume
browser that allows an AWIPS user to select
model and other data for display.

One of the reasons for this particular
architecture is that when D2D was
developed the goal was to make the
software heavily object-oriented. This meant

mailto:U.Herb.Grote@noaa.gov

that classes could be derived from a base
class and objects could be exchanged
between processes. Thus, extensions would
be derived from a parent class that included
inter-process communications and other
features. It was hoped that this would
simplify the writing of extensions. In practice,
it required some degree of familiarity with
the extensions base class and C++
programming skills. It also meant having to
link with many of the D2D software libraries
to compile the extension, increasing the
integration complexity.

4. ARCHITECTURE MODIFICATION

Implementing the plugin concept required
the development of a new interface to D2D
to ensure the necessary separation of the
plugin code from the display process. This
meant that the interface could not use any of
the existing D2D libraries and had to be
independent of the programming language.
This would allow applications to be
developed without having to link to the many
interdependent D2D libraries, and
"wrappers" could be written for the interface
code to support different programming
languages.

The first API (applications programming
interface) that we implemented was the
graphical interface to the display process.
Future developments will include an
interface library for accessing data on both
local disks and remote servers. In order to
support a comprehensive drawing capability,
the graphical interface needed to include the
ability to draw multi-color graphics. This
required significant modifications to D2D
since all D2D graphics were historically
treated as single-color overlays. The original
display code was designed for a display
card that supported an 8-bit image buffer
and several single-color graphic overlays.
When the D2D code was ported to Linux,
the 8-bit images were converted to 24-bit
true color images, but graphics continued to
be tracked as single-bit overlays. Multi-color
graphics were emulated by linking and
concurrently displaying several single-color
overlays.

The challenge of displaying multi-color
graphics was solved by treating them as
transparent images. Each graphic image
includes the alpha channel information
which specifies the amount of transparency

to be applied to each pixel. To render the
graphics to the screen, each graphic image
is blended with the other data already being
displayed. The resulting image is a single
true color image, with its image components
retained to allow toggling and graduated
blending. Although this resulted in increased
memory requirements, some memory was
reclaimed by removing the obsolete code for
8-bit pseudo color images.

The API also includes code that handles
socket communications between the plugin
and the display process. The design allows
multiple plugins to run concurrently, each
appearing on the screen as a separate
overlay. Only one interactive plugin can be
active at any time.

The initial API provides basic graphic
drawing capabilities for circles, lines,
rectangles, etc. and is approximately at the
level of the Java Abstract Window Toolkit,
but at a higher level than the X11 library.
Figure 1 illustrates a simple graphic
annotation using a drawing plugin.
Capabilities for drawing fronts and other
meteorological symbols will be implemented
as layers on top of the current API.

The goal is to convert all D2D extensions
into plugins and eventually eliminate the
extensions interface. To date, most of the
extensions have been converted collectively
by creating a new base class. Some
consideration is also being given to
replacing D2D depictables, but that is not
within the scope of the current project.

Figure 1. Simple Graphic Annotation on AWIPS

5. DEVELOPMENT ENVIRONMENT

Plugins can easily be developed outside the
AWIPS development environment. A plugin
developer's package has been created that
consists of the API library, interface
documentation, a stand-alone plugin driver
to emulate the D2D display, and some
sample plugins. Developers can use this
package to create plugins on a variety of
different machines. The plugin driver
maintains a display window that renders and
responds to the plugin instructions. Although
the plugin driver implements a complete
API, it does not perform every function of the
D2D display. It is expected to be sufficient
for initial testing of newly-developed
plugins, but final testing must be done with
D2D. Software integration entails no more
than placing the compiled plugin code in a
specified directory and restarting D2D. The
plugin manager will detect the code and
start it, and also terminate it when
instructed. The menu will automatically be
updated with the specified name of the
plugin. Unless a specific menu location is
identified, the plugin will be added to a
default menu.

6. FUTURE DIRECTION

The development of the plugin interface is
part of the ALPS (Advanced Linux Prototype
System) project (Grote et al., 2005), which,
among other things, includes prototyping
remote data access. A goal is to include the
data access interface in the plugin
developer's package. This would allow
developers to use a standard library instead
of developing their own data interfaces.

The utility of many existing meteorological
applications could be enhanced by
converting them to plugins. This would allow
them to be overlaid on other D2D
meteorological data and leverage existing
D2D interactive capabilities.

Some possible candidates for integration as
plugins are:

 Hydroview, which displays point hydro-
meteorological data such as river and
stream gage readings, precipitation
amounts, and similar environmental
information that is typically observed and
forecast for a specific location.

 ATCF (Automated Tropical Cyclone
Forecasting System) which provides
graphical displays of tropical cyclone track,
fix, and forecast information, as well as
synoptic fields and rawinsonde
observations.

 SLOSH (Sea, Lake, and Overland Surges
from Hurricanes), which estimates storm
surge heights and winds resulting from
historical, hypothetical, or predicted
hurricanes.

 FFMP (Flash Flood Monitoring and
Prediction) displays such information as
precipitation and flash flood index.

A Plugin Application Repository and
Automated Delivery System could provide a
secure online service to manage NWS
field- and laboratory-developed plugin
applications. Developers would be provided
a method for submitting plugins, which after
formal review and testing would be available
for download to operational sites. The
installation download process could be
automated, more in line with today's
software updating process where sites can
check for version updates of desired plugin
applications, select, and install. Such a
process has large potential to track and
manage plugins installed (or not installed) at
field sites, manage version control, and
more.

At the moment, D2D plugins can replace
only D2D extensions, but it may be possible
in the future also to replace depictables.
This could lead to a Common AWIPS
Visualization Environment for D2D where
plugins are the main source for generating
data displays.

7. SUMMARY

Plugins provide a unique capability for
creating and integrating new data displays
without requiring deep knowledge of the
AWIPS D2D software. Many applications
that currently run outside of D2D could be
integrated using the new interface; as more
developers begin to integrate existing and
new plugin applications into AWIPS, we plan
to continue to enhance the current API. The
features described herein were developed
as part of the ALPS project, using AWIPS
Operational Build 6 as its baseline. No dates

have been defined when this capability may
be made part of the operational AWIPS.

8. ACKNOWLEDGEMENTS

The author wishes to acknowledge the
efforts of others, especially James Ramer
from the Cooperative Institute for Research
in the Atmosphere, Gerry Murray with
Systems Research Group, and Michael
Romberg from Global Systems Division.

9. REFERENCES

Grote, H., D. Davis, C. Bullock, and J. Tuell,
2005: An advanced Linux prototype of
AWIPS. 21st Int. Conf. on Interactive
Information and Processing Systems (IIPS)
for Meteorology, Oceanography, and
Hydrology, San Diego, CA, Amer. Meteor.
Soc., CD-ROM, 8.4.

Kelly, S., 1997: An object-oriented
framework for local extensions to the WFO-
Advanced forecaster display workstation,
D2D. 13th Int. Conf. on Interactive
Information and Processing Systems for
Meteorology, Oceanography, and
Hydrology, Long Beach, CA, Amer. Meteor.
Soc., 324-327.

http://fxa.noaa.gov/publications/21st_IIPS_05/Grote-et-al.IIPS05.pdf
http://fxa.noaa.gov/publications/21st_IIPS_05/Grote-et-al.IIPS05.pdf
http://www-sdd.fsl.noaa.gov/~fxa/publications/13th_IIPS_97/KellyExt.IIPS97.html
http://www-sdd.fsl.noaa.gov/~fxa/publications/13th_IIPS_97/KellyExt.IIPS97.html
http://www-sdd.fsl.noaa.gov/~fxa/publications/13th_IIPS_97/KellyExt.IIPS97.html
http://www-sdd.fsl.noaa.gov/~fxa/publications/13th_IIPS_97/KellyExt.IIPS97.html

