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1. INTRODUCTION 
 
 Satellite observations from the current 
and future satellite missions (e.g., GOES-R, 
NPOESS, CloudSat, and GPM) will have 
increased spatial, temporal, and spectral 
resolution. The issues of how to optimally utilize 
information from these satellite measurements 
are of fundamental importance. In particular, 
capabilities of the current data assimilation 
methods to effectively assimilate dense satellite 
observations have to be evaluated. Novel 
methodologies for information content analysis, 
which are based on information theory and data 
assimilation, are especially useful for quantifying 
the impact of different satellite observations. 

Ensemble based data assimilation 
methods can be effectively used for both data 
assimilation (e.g., Evensen 1994; Houtekamer 
and Mitchell 1998; Hamill and Snyder 2000; 
Keppenne 2000; Mitchell and Houtekamer 2000; 
Anderson 2001; Bishop et al. 2001; van 
Leeuwen 2001; Reichle et al. 2002a,b; Whitaker 
and Hamill 2002; Tippett et al. 2003; Zhang et 
al. 2004; Ott et al. 2005; Szunyogh et al. 2005; 
Zupanski 2005; and Zupanski and Zupanski 
2005) and information content analysis of 
satellite observations. For example, it was 
demonstrated in Wei et al. (2005) and Zupanski 
et al. (2005a,b; 2006) that the ensemble 
transform matrix of Bishop et al. (2001) can be 
employed to define information content 
measures, such as degrees of freedom (DOF) 
for signal and entropy reduction (e.g., Rodgers 
2000). Similarly as in Zupanski et al. (2005a,b; 
2006), in this research we employ an ensemble 
data assimilation approach (Maximum 
Likelihood Ensemble Filter, MLEF, Zupanski 
2005; Zupanski and Zupanski 2005) to evaluate 
information content measures of simulated 

atmospheric observations. Unlike in the previous 
research, we will evaluate the impact of satellite 
data density on the information content 
measures. 
 
2. METHODOLOGY 

 
The MLEF seeks a maximum likelihood 

state solution employing an iterative 
minimization of a cost function. The solution for 
an augmented state vector x (including initial 
conditions, model error, and empirical 
parameters), of dimension Nstate, is obtained by 
minimizing a cost function J defined as 
 
J(x) =  
1

2
[x ! xb ]

T
Pf

!1
[x ! xb ]+

1

2
[y ! H (x)]

T
R

!1
[y ! H (x)] , (1) 

 
where y is an observation vector of dimension 
equal to the number of observations (Nobs) and 
H is a nonlinear observation operator. Subscript 
b denotes a background (i.e., prior) estimate of 
x, and superscript T denotes a transpose.  The 
Nobs ×Nobs matrix R  is a prescribed observation 
error covariance. The matrix Pf of dimension 

Nstate×Nens is the forecast error covariance (Nens 
being the ensemble size). 

Uncertainties of the optimal estimate of 
the state x are also calculated by the MLEF. The 
uncertainties are defined as square roots of the 

analysis error covariance ( P
a

1

2 ) and the forecast 

error covariance ( Pf
1

2 ), both defined in terms of 

ensemble perturbations. The square root of the 
analysis error covariance is obtained as  
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where I

ens
is a diagonal identity matrix of 

dimension Nens× Nens, and i

a
p  are column 
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vectors representing analysis perturbations in 
ensemble subspace. Matrix C of dimension 
Nens×Nens is defined as  
 
 C = Z

T
Z    ; z i = R!

1
2H (x + p f

i
) ! R

!
1
2H (x) , (3) 

    
where vectors zi are columns of the matrix Z of 
dimension Nobs×Nens. Note that, when calculating 
zi, a nonlinear operator H is applied to perturbed 
and unperturbed states x. Vectors i

fp  are the 
columns of the square root of the forecast error 
covariance matrix obtained via ensemble 
forecasting employing a nonlinear dynamical 
model M (e.g., an NWP model)  
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1
p f
2
... p f

Nens!" #$!   ;  
p f
i
= M (xa + pa

i
) ! M (xa )  ,  (4) 

 
where xa is the optimal solution for the model 
state (analysis).  

Equations (1)-(3), referred to as analysis 
equations, are solved iteratively in each data 
assimilation cycle, while equation (4), referred to 
as a forecast equation, is used to advance the 
columns of the forecast error covariance matrix 

Pf

1

2  from one cycle to another.  
Measures of information content of 

observations referred to as DOF for signal and 
entropy reduction are often used in information 
theory (e.g., Rodgers 2000). In data assimilation 
applications these measures are commonly 
defined in terms of analysis and forecast error 
covariances, P

a
and Pf , (e.g., Wahba 1985; 

Purser and Huang 1993; Wahba et al. 1995; 
Rodgers 2000; Rabier et al. 2002; Fisher 2003; 
Johnson 2003; Engelen and Stephens 2004). 
The information measures can also be 
calculated employing the eigenvalues 2

i
! of thr 

matrix C, defined in (3), that we also refer to as 
the information matrix in ensemble subspace. 
Thus, the following formulas for DOF for signal 
ds and entropy reduction h can be used: 
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which are essentially the same formulas as in 
Rodgers (2000). The difference is that the 
eignevalues of the information matrix defined in 
ensemble subspace (C) are used in our 

formulation, while in the formulation of Rodgers 
(2000), the eigenvalues of the information 
matrix, defined either in the model space or in 
the observation space, are used. The advantage 
of the information matrix defined in ensemble 
subspace is that it is commonly a small matrix 
(of dimensions Nens× Nens), so it is possible to 
evaluate the full eigenvalue spectrum of it, even 
when using complex NWP models and 
numerous observations. This property is 
especially appealing for calculating information 
content of numerous satellite observations. A 
potential disadvantage is that a small ensemble 
size might be insufficient to accurately determine 
the information measures. However, even 
relatively small ensemble sizes (e.g., 10-50 
ensemble members) have been proven useful in 
determining information content measures (e.g., 
Wei et al. 2005; and Zupanski et al. 2005a,b, 
2006).  
 We employ the methodology described 
above to determine the impact of satellite data 
density on the information content measures. To 
simulate satellite observations of various 
densities, we use the Colorado State University 
Regional Atmospheric Modeling System (RAMS, 
Pielke et al., 1992; Cotton et al., 2003), coupled 
with a radiative transfer model.  Experimental 
results for a severe weather case will be 
presented at the conference. Implications of 
these results on combining information from 
multiple sensors of future satellite missions will 
also be discussed. 
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