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1. INTRODUCTION

Satellite observations from the current
and future satellite missions (e.g., GOES-R,
NPOESS, CloudSat, and GPM) will have
increased spatial, temporal, and spectral
resolution. The issues of how to optimally utilize
information from these satellite measurements
are of fundamental importance. In particular,
capabilities of the current data assimilation
methods to effectively assimilate dense satellite
observations have to be evaluated. Novel
methodologies for information content analysis,
which are based on information theory and data
assimilation, are especially useful for quantifying
the impact of different satellite observations.

Ensemble based data assimilation
methods can be effectively used for both data
assimilation (e.g., Evensen 1994; Houtekamer
and Mitchell 1998; Hamill and Snyder 2000;
Keppenne 2000; Mitchell and Houtekamer 2000;
Anderson 2001; Bishop et al. 2001; van
Leeuwen 2001; Reichle et al. 2002a,b; Whitaker
and Hamill 2002; Tippett et al. 2003; Zhang et
al. 2004; Ott et al. 2005; Szunyogh et al. 2005;
Zupanski 2005; and Zupanski and Zupanski
2005) and information content analysis of
satellite observations. For example, it was
demonstrated in Wei et al. (2005) and Zupanski
et al. (2005a,b; 2006) that the ensemble
transform matrix of Bishop et al. (2001) can be
employed to define information content
measures, such as degrees of freedom (DOF)
for signal and entropy reduction (e.g., Rodgers
2000). Similarly as in Zupanski et al. (2005a,b;
2006), in this research we employ an ensemble
data assimilation approach (Maximum
Likelihood Ensemble Filter, MLEF, Zupanski
2005; Zupanski and Zupanski 2005) to evaluate
information content measures of simulated
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atmospheric observations. Unlike in the previous
research, we will evaluate the impact of satellite
data density on the information content
measures.

2. METHODOLOGY

The MLEF seeks a maximum likelihood
state solution employing an iterative
minimization of a cost function. The solution for
an augmented state vector x (including initial
conditions, model error, and empirical
parameters), of dimension Nggs, is obtained by
minimizing a cost function J defined as

J(x)=
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where y is an observation vector of dimension
equal to the number of observations (Nops) and
H is a nonlinear observation operator. Subscript
b denotes a background (i.e., prior) estimate of
x, and superscript T denotes a transpose. The
Nops xNops matrix R is a prescribed observation

error covariance. The matrix Pf of dimension

NitateXNens is the forecast error covariance (Neps
being the ensemble size).

Uncertainties of the optimal estimate of
the state x are also calculated by the MLEF. The
uncertainties are defined as square roots of the

1
analysis error covariance ( P?) and the forecast
1
error covariance (P; ), both defined in terms of

ensemble perturbations. The square root of the
analysis error covariance is obtained as
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where I, is a diagonal identity matrix of

dimension Ngpsx Neps, and p! are column



vectors representing analysis perturbations in
ensemble subspace. Matrix C of dimension
NensxNeps is defined as

C=2'2Z ;7 =R’H(x+p))-R'H(x),(3)

where vectors Z are columns of the matrix Z of
dimension NyysxNens. Note that, when calculating
Z', a nonlinear operator H is applied to perturbed

and unperturbed states x. Vectors p’} are the

columns of the square root of the forecast error
covariance matrix obtained via ensemble
forecasting employing a nonlinear dynamical
model M (e.g., an NWP model)

P=[p; p - op]
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where x, is the optimal solution for the model
state (analysis).

Equations (1)-(3), referred to as analysis
equations, are solved iteratively in each data
assimilation cycle, while equation (4), referred to
as a forecast equation, is used to advance the
columns of the forecast error covariance matrix

1
Pf? from one cycle to another.

Measures of information content of
observations referred to as DOF for signal and
entropy reduction are often used in information
theory (e.g., Rodgers 2000). In data assimilation
applications these measures are commonly
defined in terms of analysis and forecast error

covariances, P, and P,, (e.g., Wahba 1985;

Purser and Huang 1993; Wahba et al. 1995;
Rodgers 2000; Rabier et al. 2002; Fisher 2003;
Johnson 2003; Engelen and Stephens 2004).
The information measures can also be

calculated employing the eigenvalues lf of thr

matrix C, defined in (3), that we also refer to as
the information matrix in ensemble subspace.
Thus, the following formulas for DOF for signal
ds and entropy reduction h can be used:
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which are essentially the same formulas as in
Rodgers (2000). The difference is that the
eignevalues of the information matrix defined in
ensemble subspace (C) are used in our

formulation, while in the formulation of Rodgers
(2000), the eigenvalues of the information
matrix, defined either in the model space or in
the observation space, are used. The advantage
of the information matrix defined in ensemble
subspace is that it is commonly a small matrix
(of dimensions Ngpsx Neps), so it is possible to
evaluate the full eigenvalue spectrum of it, even
when using complex NWP models and
numerous observations. This property is
especially appealing for calculating information
content of numerous satellite observations. A
potential disadvantage is that a small ensemble
size might be insufficient to accurately determine
the information measures. However, even
relatively small ensemble sizes (e.g., 10-50
ensemble members) have been proven useful in
determining information content measures (e.g.,
Wei et al. 2005; and Zupanski et al. 2005a,b,
2006).

We employ the methodology described
above to determine the impact of satellite data
density on the information content measures. To
simulate satellite observations of various
densities, we use the Colorado State University
Regional Atmospheric Modeling System (RAMS,
Pielke et al., 1992; Cotton et al., 2003), coupled
with a radiative transfer model. Experimental
results for a severe weather case will be
presented at the conference. Implications of
these results on combining information from
multiple sensors of future satellite missions will
also be discussed.
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