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1. INTRODUCTION. 
 

The main purpose of this work is to 
propose a statistical test to detect when a 
significant climate change occurs.  The test is very 
simple and efficient and consists of removing the 
autocorrelation structure of the process and 
determines when the fingerprint of the process 
exhibits a significant change.  The major 
contribution of this work is to introduce a tool to 
determine without ambiguity when a local climate 
change occurs.  The local climate change will be a 
relative change depending on the baseline or the 
reference point.  However, when the change is 
extremely large then the baseline may not affect 
the detection time. 

 
Climate is the accumulation of seasonal 

weather events over long periods of time and over 
a particular place.  The response of anthropogenic 
changes in climate forcing factors occurs against 
the natural forcing climate variability (Feldstein, 
2002).  Climate variability which is not forced by 
external factors is known as internal climate 
variability and occurs at all times from weeks to 
centuries.   External factors that force climate 
variations are due to natural and anthropogenic 
causes, such as solar radiation, volcanic eruption, 
and increasing concentration of greenhouse gases 
(Barnett, et al., 1999).  Climate change detection 
is the procedure to determine when an observed 
climate behavior differs significantly from the 
internal natural variability.  
 

Climate change can be detected by 
studying the time series behavior of climate 
indicators.  The Intergovernmental Panel on 
Climate Change (IPCC) classified the indicators 
as: concentration, weather, biological, physical 
and economical indicators.  Examples are the time 
series of CO2, O3, air temperature, rainfall, sea 
level, artic ice, etc.  A climate indicator is a 
sequence of observations that have been 
collected for long period of time.  The climate in a 
particular region of the world can be represented 
by a stationary process, which is characterized by 
having an internal natural variability and its joint 
probability density function is invariant with time.  
However, if the probability distribution changes 

with time it implies that external factors cause the 
mean and the autocovariance functions to change 
with time.  Therefore to detect a climate change is 
equivalent to determining when the process 
changes from being a stationary to a nonstationary 
process.  
 

Most of the meteorological variables and 
climate indicators exhibit strong autocorrelation 
structure and therefore the conventional statistical 
tests provide misleading results because they are 
based on the assumption that the underlying time 
series are formed by a sequence of independent 
variables (Ramirez, and Sastri, 1997).  For 
instance the usual t, F and Chi-square tests do not 
work for most of the climate indicator variables.   

 
The proposed algorithm was used to 

detect whether or not the hurricane activity in the 
North Atlantic basin exhibits a behavior that is 
significantly different from a baseline hurricane 
activity.  The algorithm was also used to determine 
whether or not the main Caribbean islands exhibit 
a significant change in the air surface temperature.   
The algorithm identified a significant change in the 
hurricane activity and in the surface air 
temperature of the islands and consequently it can 
be stated that a climate change has occurred in 
the Caribbean basin.  It was also noted that the 
detected climate change is in harmony with the 
observations of global warming. 

 
The remainder part of this paper is 

organized as follows:  the second section presents 
a description of the data sets used.  The third 
section describes the proposed detection 
algorithm. The fourth section presents climate 
change detection results.  The fifth section 
presents a simulation exercise to validate the 
detection algorithm and the final section presents 
some conclusions. 
 
2.  DATA. 
 

Three types of data were used in this 
study:  air temperature in the North Hemisphere, 
air temperature in the main Caribbean islands and 
the hurricane activity in the North Atlantic basin. 
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2.1. Temperature in the North Hemisphere. 
 

This data set was acquired from Goddard 
Institute for space Studies (GISS) at the following 
web site http://data.giss.nasa.gov/gistemp/. This 
data includes anomalies of surface temperature in 
the North Hemisphere from 1880 to 2004.  This 
data set was documented by Hansen, and Ruedy, 
(1999).  Figure 1 shows the anomalies of the air 
temperature in the North Hemisphere.  
 

 
 

Figure 1. Annual anomalies of surface 
temperature in the North Hemisphere.  
 
2.2. Air temperature on the main Caribbean 
islands. 
 

Puerto Rico (PR) is one of the well 
instrumented Caribbean islands and includes a 
large amount of weather stations that belong to 
the national cooperative network.  The 
Cooperative Observed Network (the Coop 
Network) is a nationwide weather and climate 
monitoring network of volunteer citizens and 
institutions that observe and report weather 
information on a regular basis. Information from 
Coop stations can be obtained from the following 
web site: http://www.dnr.state.sc.us/pls/cirrus/ 
cirrus.login. PR has 124 coop stations, six of them 
have information since the beginning of the 20th 
Century, and a large number of stations have 
been providing information since 1955 to the 
present. Thus, the selected data sets include 56 
stations that have precipitation data and out of 
them 39 exhibit air temperature (minimum, 
maximum and mean).  In addition to this data set, 
15 weather stations were included that belong to 
the Global Historical Climatology Network (GHCN) 
which is a comprehensive global surface baseline 
climate data for monitoring and detecting climate 
change. This network recorded air temperature, 
precipitation, and pressure on a monthly basis.  
Thus the air temperature for PR was computed by 
using 54 stations. The total studied stations for 

Puerto Rico are presented in Figure 2.  
 

 
 

Figure 2: The location of the Global Historical 
Climatology Network stations are given in blue 
cross and the coop stations are exhibited with red 
dots. 
 

Data for the remaining Caribbean islands 
are very limited and difficult to obtain.   Information 
from weather stations was obtained from the 
GHCN. The available stations for each country are 
the following: Cuba has 14, Dominic Republic 28, 
Haiti 1, and Jamaica 5 stations.   Stations for Cuba 
and PR include minimum, maximum, and average 
temperatures.  However, for other islands the data 
is limited to only monthly averages. Usually, the 
data sets have time series from 1960 to 1980, i.e., 
each time series exhibits significant amount of 
missing values.  Therefore, a regression approach 
was used to reconstruct the times series.  The 
reconstruction task is tedious and time consuming.  
Thus, stations that exhibit the most complete time 
series were selected to perform the preliminarily 
data reconstruction exercise. Atmospheric 
reanalysis data was used to conduct the data 
reconstruction.  Reanalysis data was obtained 
from the National Centers for Environmental 
Prediction (NCEP).  Most of the meteorological 
data collected over the globe arrives at NCEP, 
where environmental scientists analyze this 
information and generate a wide variety of 
environmental guidance information. This effort 
involves the recovery of land surface, ship, 
rawinsonde, aircraft, satellite and other data 
(Kalnay, et al., 1996).  The NCEP data is given in 
2.5 degrees spatial resolution with 27 vertical 
levels.  Information from the surface level and the 
closest NCEP grid points to a given island were 
used to estimate the air temperature.  The blue 
cross on Figures 3 to 5, show the location of the 
stations, the red dots indicate the location of the 
selected station for reconstruction and the green 
dots indicate the location of the NCEP grid points 
used for estimation. Monthly anomalies were 
computed and organized in annual and quarterly 
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time series:  December, January and February 
(DJF), March, April and May (MAM), June July 
and August (JJA), and September, October and 
November (SON).  Also the difference between 
the maximum and the minimum air temperature 
were computed. 

 

 
Figure 3.  Location of the stations in Cuba. 

 
 

 
Figure 4.  Location of stations in Jamaica. 
 
 

 
Figure 5.  Location of stations in Haiti and 
Domincan Republic. 
 

The NCEP data is given every six hours 
and is used to estimate the monthly average of air 
temperature.  The NCEP data provides 
information at: 0, 6, 16, and 18 universal times.  
Observations at 6 and 18 times were used to 
estimate the minimum and maximum air 
temperature, respectively.  The average of the four 
daily observations was used to estimate the mean 
daily air temperature and these time series were 
used to estimate the monthly air temperatures.  
 
2.3.  Tropical storms and hurricanes. 
 
 The North Atlantic basin (including the 

North Atlantic Ocean, the Caribbean sea, and the 
Golf of Mexico) exhibits interannual and 
interdecadal variability of tropical cyclone activity. 
Tropical storms and hurricanes that have occurred 
since 1886 to present are exhibited in Figure 6.  
These data were obtained from the National 
Hurricane Center. 
 

 
Figure 6.  Hurricane and tropical storms in the 
North Atlantic basin (information available at the 
National Hurricane Center). 
 
3.  CHANGE DETECTION TEST 
 
The proposed detection algorithm consists of 
removing the autocorrelation structure of a climate 
indicator and determines whether or not the mean 
and/or the autocorrelation function of the process 
changes over time.   The algorithm consists of 
determining when the process changes from being 
a stationary to nonstationary stage and includes 
five major steps: (1) collect the largest sequence 
of a climate indicator; (2) divide the data sets in 
two parts: the baseline and the testing sequence;  
(3) identify an autoregressive moving average 
model to the baseline;  (4) computing the 
autoregressive moving average (ARMA) finger 
print; and (5) use a sequential hypothesis testing 
procedure to determine whether or not the mean 
of the process has changed.  The sequential test 
also includes determining whether or not the 
autocorrelation structure changes over time.   
 
3.1. Sequence of a climate indicator. 
 
 It is assumed that climate properties of a 
given part of the world are expressed by a 
sequence of a climate indicator.  A climate 
indicator can be expressed as a time series of air 
temperature, sea level, pressure, etc.  It is 
required that the selected time series has no 
missing values and were obtained at equal time 
intervals.  It is desirable that the time series will be 

  



 

large enough to identify the autocorrelation 
structure and left a significant part of the series in 
the testing side.  The minimum length of the time 
sequence must be 50 observations.   
 
3.2. Dividing the time series. 
 
 The time series will be divided into two 
parts.  The first part will be called the baseline and 
the second part will be called the testing part.  The 
baseline will be used as a reference point to 
measure the change with respect to the baseline.  
The baseline must be at least 30 observations i.e. 
to be able to identify a time series model.  The 
baseline will be located on the left and the testing 
part on the right hand side of the series.  Typically, 
the baseline may be located at the beginning of 
the series; however, it could be placed in almost 
any part of the series as long as enough testing 
observations are available.  The testing part will be 
at least 20 observations and will be used to 
measure whether or not there exists a significant 
change with respect to the baseline.  It should be 
noted that the change detection test will be relative 
and always will depend on the selected baseline.  
The baseline and the testing sequence can be 
expressed as follows: 
 
Baseline sequence:    for  tx mt ,,2,1 L=
Testing sequence:   for  tx nmmt ,,2,1 L++=  

For   and   30≥m 20≥−mn
 

Where  represents the anomalies of the 
underlying climate indicator at time t;   is 
sample size of the baseline, and  is the total 
number of available observations of the climate 
indicator. 

tx
m

n

 
3.3. Identify an ARMA model. 
 
 Most of the climate indicators and 
meteorological variables are a sequence of 
autocorrelated time series.  For instance, the 
baseline of anomalies of air temperature, sea level 
pressure, sun radiation CO3, and O3 are 
autocorrelated processes and can be represented 
by an ARMA model. The baseline will be tested 
first to determine whether or not the baseline is an 
autocorrelated or a white noise process.  If the 
underlying process is a white noise the ARMA 
model is not required.  On the other hand, if the 
baseline is autocorrelated then it will be used to 
identify an ARMA model.  It should be noted that 

the baseline must be a stationary process.  
Stationary in the sense that the mean and the 
autocorrelation function will not change over time.  
This assumption is satisfied because the climate 
with internal natural variability will exhibit a 
process with constant mean and autocorrelation 
function independent of time.  The main purpose 
of identifying an ARMA model is to remove the 
autocorrelation structure.  The identification of an 
ARMA model can be easily accomplished by using 
the methodology described in several time series 
textbooks (Box and Jenkins 1976).  An ARMA 
model is developed by using the historical  
observations to estimate the current observation.  
This process is known as the autoregression.  If 
the deviation of the estimated from the 
observations is small the model will be called 
autoregressive model.  On the other hand, and if a 
significant deviation occurs in the estimation the 
errors and the historical observations are used to 
estimate the current observation and this model is 
called autoregressive moving average model.  
Several statistical software are available to 
perform an automatic identification of the ARMA 
model: for instance:  Statgraphics, ITMS2000.  
Other alternative is to use Matlab which includes 
the system identification toolbox that provides an 
excellent tool to identify the ARMA model.  A 
typical representation of an ARMA model is as 
follows: 
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for   mt ,,2,1 L=  

Where  and  as defined previously;  and 

 are the parameters of the moving average 
and the autoregressive components of the model, 
respectively.  The values of  and  define the 
order of the two polynomials; 

tx m s,θ

s,φ

p q
B  is the back shift 

operator;  is a sequence of independent 
random variables with mean equal to zero and a 
standard deviation equal to one.  It should be 
noted that  is the anomalies of the climate 
indicator, i.e., the periodicity component is already 
removed and the baseline is likely to be a 
stationary process. 

ta

tx

 
3.4 Computing the ARMA finger print. 
 
 The ARMA fingerprint is the sequence 
created by the difference at each point in time 

  



 

between the estimated from the ARMA model and 
the observed value.  The ARMA fingerprint can be 
computed as follows: 
 

ttt xxf )−=    for          (2) nt ,,2,1 L=
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Where is the ARMA fingerprint; the residuals 

for the baseline sequence;  and  are 
parameter estimates that must be computed with 
the baseline sequence and must be unchanged for 

.  Again the ideal software to perform 
this calculation is Matlab. 

tf tâ

s,θ̂ s,φ̂

nt ,,2,1 L=

 
Thus, if no change has occurred in the underlying 
process then the fingerprint will reduce to residual 
values , and will behave as a white 
noise sequence.  However, if the process exhibits 
a significant change, the ARMA model will show a 
unique characteristic which will be exhibited either 
in the mean or in the autocovariance function of 
the given sequence and this special sequence will 
be called the ARMA fingerprint.  Thus, if a 
significant change occurs in the mean of the 
process, the ARMA fingerprint will also exhibit a 
significant change in the mean.  On the other 
hand, if change occurs in the second moment of 
the process, the fingerprint will exhibit significant 
change in the autocorrelation function (Ramirez, 
and Sastri, 1997).   

( tt af ˆ= )

 
3.5. Sequential hypothesis testing. 
 
 If the climate indicator was forced by 
external forces, its ARMA fingerprint will present a 
trend in the mean or a significant change in the 
autocorrelation structure.  Thus to detect these 
changes two sequential tests are needed.  Since 
the climate changes are represented by a small 
variation either in the mean or in the 
autocovariance, the tests must be very sensitive.  
In addition since the decision of the hypothesis 
testing is at each point in time, the exponentially 
weighted moving average (EWMA) and the 
transient detection test are adopted to detect the 
climate change.  EWMA test was proposed by 
Roberts (1959) and the transient test was 
proposed by Ramirez and Sastri (1997).  In this 

study only the EWMA test is implemented, the 
transient test will be applied in a future work. 
 
 The exponential weighted moving average 
test can be expressed as follows: 
 

1)1( −−+= ttt zfz λλ               (4) 
 

A significant increment occurs in the mean 
at time t if  and a significant decrement 

occurs in the mean at time t if , where  
tt Uz >

tt Lz <
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for nt ,,2,1 K=  
 
Where  is the ARMA fingerprint at time t, tf μ  
and σ  are the mean and the standard deviation of 
the baseline sequence of  for t=1,2,…,m;  is 
the exponentially weighted moving average of the 
fingerprint, and the initial value of  can be 
estimated by the average of the fingerprint during 
the baseline (t=1,2,…,m); 

tf tz

tz

λ  is a weighted 
constant and varies between zero and one.  
However, to have better results it is recommended 
to take the value of 0.2. and M is constant that 
change depending on λ .  Thus, for  2.0=λ  

3=M . 
 

The EWMA test was adopted because has 
been shown to be an efficient test to detect a small 
shift in the mean and is a robust test in the senses 
that is not affected by moderate deviations from 
the Gaussian process and because is not affected 
by weakly autocorrelated time series.  Cumulative 
sum (CUSUM) test can also be used to detected 
climate change (Page 1954).  However, since the 
implementation EWMA is easier than the CUSUM 
and detection results are about the same the 
EWMA test is recommended.  An excellent 
discussion of the implementation of these tests 
can be found in Montgomery, (2001) 
 
 

  



 

4.  CLIMATE CHANGE RESULTS 
 
Essentially three climatic indicators were 

studied and results are presented in the following 
order:  surface temperature in the North 
Hemisphere, air temperature in the Caribbean 
islands, and hurricane activity in the North Atlantic. 

 
4.1.  Change detected in the North Hemisphere. 

 
Anomalies of the surface temperature in 

the North Hemisphere are presented in Figure 1.  
This series include 125 years of information (1980 
– 2004).  The baseline was explored with from the 
first 30 up to 110 years with increments of 10.  
This exploration was conducted to determine 
consistency on the change detection time.  Table 
one shows that the detection time occurred on 
years 1995 and 1998.  However, there are five 
baselines that indicate a change occurred in 1995 
and all the baseline indicate that a change 
occurred in 1988.  Therfere, there is an agreement 
that there is a significan change in the anomalies 
in the North Hemisphere.  Thus, the baseline 
could be 30, 40, 60 or a 110.  For purpose of 
illustration of the performances of the test the size 
of the baseline was fixed to 60, i.e., m=60.  Thus, 
the baseline is formed by the sequence of 
anomalies from 1880 to 1939. 

 
Table 1.  Baseline for the surface temperature in 
North Atlantic. 

 
Size of the baseline Detection time 

30 1998 
40 1998 
50 1995,and 1998 
60 1998 
70 1995,and 1998 
80 1995,and 1998 
90 1995,and 1998 
100 1995,and 1998 
110 1998 

 
Figure 7 and 8 show the autocorrelation 

and the partial autocorrelation functions, which 
indicates that the baseline behaves as an 
autoregressive process of order one.  This is due 
to the fact that the autocorrelation function shows 
a sinusoidal decay and also the partial 
autocorrelation function shows that only its first lag 
is significant.  These are the typical characteristics 
of an autoregressive process of order one, AR(1). 
 

 
Figure 7.  Autocorrelation of the baseline. 

 

 
Figure 8.  Partial autocorrelation function of the 
baseline. 
 

A loss function was minimized to 
determine the optimal estimate of the parameter of 
the AR(1) model.  The estimation procedure 
arrived to the following value and the 
minimum value of the loss function was 0.0258.  
Figure 9 shows the behavior of the AR(1) finger 
print.  The first m values of the fingerprint behave 
as a white noise process and the finger print from 
observation m+1, m+2,…, n exhibits a strong 
autocorrelation behavior, indicating that a change 
is embedded in the fingerprint.  Figure 10 shows 
the sequential hypothesis testing results.  When a 
point falls between the red lines it indicates that 
there is no evidence to reject the hypothesis that a 
significant change has occurred at a specific point 
in time.  On the other hand, if a point falls outside 
of the red lines it indicates that a significant 
change has occurred at that particular time.  The 
level of significance was set equals to 5%.   

8497.01̂ =φ

Figure 10 shows that a significant change 
occurred in 1998.  This figure also shows that the 

  



 

change becomes evident in 1998; however, the 
trend of this change started in about 1970.  It 
should be noted that the test does not detect 
immediately the change unless the change is 
extremely large as is explained in the next section. 
 

 
Figure 9.  The AR(1) finger print. 
 

 
 
Figure 10.  Climate change detection with 
anomalies of the air temperature in the North 
Hemisphere. 
 
 
4.2. Change detected in the Caribbean islands. 
 

The detection test was also implemented into 
the four major Caribbean islands.  It was that 
observed the strongest climate indicator was the 
gradient temperature, i.e., the annual differences 
between the average of the maximum and the 
average of the minimum air temperature.  The 
mean of this difference were also computed and 
subtracted form the difference to obtain the annual 
anomaly of the gradient temperature. This 
calculation was possible only for Puerto Rico and 
for Cuba, because of the data availability.  The 
rest of the islands, only the annual average was 
possible to reconstruct.  An autoregressive model 
of order one AR(1) was identified for the gradient 

temperature for both islands: Puerto Rico and 
Cuba.  Figure 11 shows the EWMA test for the 
gradient temperature indicating that a significant 
change occured in Puerto Rico in 1998, and 
possible this change started in 1995.  Figure 12 
also shows the EWMA test of the gradient 
temperature for Cuba indicating that a significant 
change occurred in 2000, and possible this 
change started in 1995 because of the trend of the 
EWMA fingerprint.   

 

Figure 11.  Change detected in Puerto Rico using 
the gradient temperature. 

 

Figure 12.  Climate change detected in Cuba in 
2000  

 The anomalies of the mean temperature 
for these islands also show an autoregressive 
behavior of order one.  Figures 13-15 show the 
EWMA test for Dominican Republic, Haiti and 
Jamaica respectively.  These tests were based on 
the AR(1) fingerprint of the annual average of air 
temperatures.  Data reconstruction was 
accomplished using the daily NCEP reanalysis 
data as explained in section 2.  These figures are 
in agreement and show that a significant change 

  



 

occurred in these countries at the same time.  The 
detected change occurred in 1998 and the most 
probably starting point was in 1995.  Therefore, 
the Caribbean climate change is in agreement with 
the global climate change detected in the North 
Hemispheric.   

Figure 13.  Change detected in Dominican 
Republic. 

 

Figure 14.  Change detected in Haiti. 

Figure 15.  Change detected in Jamaica. 

4.3. Change detected in the Hurricane Activity. 

The hurricane activity in the North Atlantic was 
studied to identify whether or not there is a 
significant change.  The hurricanes activity was 
organized as follows: The storms that reached the 
category of hurricane, the tropical storms that do 
not become a hurricane and the total number of 
named storms.  It should be noted that the 

hurricanes behaves as s sequence of independent 
random variables.  Therefore, the ARMA model 
was not needed, e.i., the fingerprint is a white 
noise and the original information was processed.  
The available historical information started in 
1886.  However, the reliable information started in 
1944 (Goldember, et al., 2001).  Thus the 
performed analysis was limited the period of 1944 
to 2005.   

In order to identify consistency on 
detection, different baselines were explored.  
Although different baselines were used, the 
detection time was the same.  Therefore, a 
significant change in the number of tropical storm 
has been detected in 2002.  The detection 
procedure is consistent and any of the baselines 
can be used to perform the detection test.  Figure 
16 shows the EWMA test pointing out that a 
significant number of tropical storms occurred in 
2002 and the possible starting time was in 2000.   

Table 2.  Number of tropical storms 

Size of baseline Change detection time 
20 2002 
30 2002 
40 2002 
50 2003 

Figure 16. Tropical storms in the North Atlantic 

Different sizes of baselines were used to 
detect a change in the number of hurricanes and 
also the different baselines generate a single 
detection time.  Therefore a significant increment 
in the number of hurricanes occurred in 2005.  
However, the fingerprint indicates that the actual 
increment started about 1995, as is shown in 
Figure 17.  

 

  



 

Table 3.  Number of hurricanes. 

Size of baseline Change detection time 
25 2005 
30 2005 
35 2005 
40 2005 
45 2005 
50 2005 

 

Figure 17.  Change detected on the number of 
Hurricanes. 

When tropical storms and hurricanes are 
combined the change becomes evident in 2001.  
However the trend in the fingerprint indicates that 
the change started about 1995.  Therefore, the 
change in the hurricane activity started in 1995, 
which is also in agreement with the global climate 
change that started in 1995. 

Table 4.  Number of tropical storms and 
hurricanes 

Size of baseline Change detection time 
20 2001 
25 2001 
30 2003 
35 2001 
40 2001 
45 2001 
50 2001 

 

Figure 18.  Change detected on tropical storms 
and hurricanes. 

5.  SIMULATION RESULTS 

The fingerprint is tested throughout the 
sequential test to determine if there is enough 
evidences to declare a change.  In a hypothesis 
testing two types of errors can occur.  It should be 
noted that there will be no errors if the entire 
population is known.  However, in the real life the 
only available information a single sample of the 
process, and consequently the sampling will 
generate two types of errors.  Error type I is the 
incorrect decision of indicating that there is a 
change when in reality no change has occurred.  
The error type II consist on point that there is not a 
change when in reality a change has occurred.  
The probability that a type one error occurs is 
called the significant level and typically is assigned 
a value in the range between 2.5% to 10% and the 
magnitude of this risk is established by the 
designer of the hypothesis test.  The probability 
that the error type II occurs is called beta and it 
depends on the magnitude of the climate change 
and the natural variability of the climate indicator.  
If the occurred climate change is relatively large 
with respect to the variability of the process then 
the beta size will be small.  On the other hand if 
the occurred climate change is relatively small with 
respect to the variability of the process then the 
beta size will be very large.  For practical purposes 
it would be desirable to have a strong test that 
exhibits a small alpha and beta values.  A test with 
a small beta value is the one that exhibits a small 
average run length (ARL). 

A Monte Carlo simulation technique was 
used to represent the annual anomalies of the air 
temperature.  Since the anomalies of the air 
temperature in the Norh Hemisphere and in the 
Caribbean islands behave as an autoregressive 
process of order one, 200 years were of 
anomalies of air temperature were simulated.  A 
shift in the mean of the synthetic series was 
imposed to measure whether or not the sequential 
test detects the change.  Two parameters are 
controlled in the simulation: the size of the change, 
and the time when the shift occurs.  The 
magnitude of the change is a multiple of the 
variance of the noise in the baseline.  The shift in 
the mean was imposed at the following point in 
time 80, 90,…, 190.  The exercise was repeated 
50 times with a different seed number random 

  



 

generator.  The AR(1) fingerprint was processed 
by the EWMA sequential test.  Thus for each set 
of random numbers, and for a specific increment 
and a point of shift the following statistics were 
computed: the number of times that a change was 
detected, the probability of detection, the time 
delay to detect a change and its average which is 
called the average run length (ARL), the number 
of false alarms, the probability of a false alarm 
occurs.  It should be noted that the ARL depends 
on the variability of the process, the amount of the 
mean shift and seed numbers.   

Figure 19 shows a simulation of an AR(1). 
A shit in the mean occurs at time 120 and the 
minim required increment to perform the first 
detection was σ25.1=Δ .  The detection occurs 
at time 122, i.e., a time delay of 2 units of time.  
Figure 20 shows also a simulation of an AR(1) and 
the shift in the mean occurs at time 150.  The 
minim required increment to perform the first 
detection was σ3=Δ .  The detection occurs at 
time 158 with a delay of 2 units of time.  This 
exercise shows that if the change occurs when the 
process exhibits large values the delay to detect a 
change is small and also the required shift in the 
mean is small.  On the other hand, if the shift in 
the mean is imposed when the process exhibits is 
smallest values then the delay to detect a change 
is larger and the required minimum size of the shift 
to detect a change is larger. 

 

Figure 19.  The change occurs at 120 and was 
detected at time 122.  The minimum increment to 
perform the first detection was σ25.1=Δ  

 

Figure 20.  Change occurs at 150 and was 
detected at time 150.  The minimum increment to 
perform the first detection was σ3=Δ . 

Table 5.  Simulation results. 

Specifications 

Average 

 Δ  

Average 
ARL 

Average 
%of 

detection 

Average 
%of false 

alarm 

the first detection 1.62 19.11 15.17 4.67 

5 ≤ Detec. ≤ 10 1.75 12.24 8.33 0.00 

11 ≤ Detec. ≤ 20 2.07 16.54 16.67 8.33 

21 ≤ Detec. ≤ 30 2.42 12.72 25.00 1.33 

31 ≤ Detec. ≤ 40 3.28 9.26 33.33 0.93 

41 ≤ Detec. ≤ 50 2.66 19.84 45.10 6.13 

51 ≤ Detec. ≤ 60 3.03 19.82 58.33 0.67 

61 ≤ Detec. ≤ 70 3.23 20.59 66.67 1.89 

71≤ Detec. ≤ 80 3.30 19.14 75.00 2.60 

81 ≤ Detec. ≤ 90 3.78 19.22 83.33 2.45 

91 ≤ Detec. ≤ 100 4.21 16.34 92.91 1.06 

100% detection 4.79 13.90 100.00 1.06 

ARL=1 6.36 1.00 77.78 0.19 

 Simulation results are summarized as 
follows.  The average minim increment to perform 
the first detection was σ64.1 , average run length 
is 18.97, the average probability of detection 
associated to this increment is 0.16 and average 
false alarm is 0.04. 

6. CONCLUSIONS. 
 
 A global climate change was detected in 
1998; however, the trend of the finger print 
suggests that in 1995 the changes in the climate 
produced by external factors become greater than 
the internal natural variability. Three of the main 

  



 

islands also show evidences that a climate change 
occurred in 1998 and the staring time was 1995.  
The total number of tropical storms and hurricanes 
exhibit an increasing hurricane activity in 2001 and 
the most probable starting time of this change was 
also in 1995.  In summary the Caribbean climate 
change becomes evident in 1998 and this change 
started in 1995.  The local Caribbean climate 
change is also in harmony with the global climate 
change, detected by the anomalies of the North 
Hemisphere was evident in 1998; however,  
 
 An algorithm is proposed to detect a 
climate change.  The algorithm is simple and 
efficient.  The detection strategy consist on 
identifying the autocorrelation structure of a given 
climate indicator and the autocorrelation structure 
is removed to determine the ARMA fingerprint and 
a sequential hypothesis testing is incorporated 
based on the exponentially weighted moving 
average of the finger print.  It has been observed 
that the proposed algorithm determines with a 95 
confidence interval when a climate change is likely 
to occur.  This test provides the possibility of 
determining whether or not a given climate change 
is a result of internal natural variability or whether 
or not the underlying climate change is caused by 
external factors, and consequently the external 
factors must be investigated to mitigate the drastic 
and future consequences. 
 
 The proposed detection test was 
implemented and the following changes were 
detected:  The anomalies of the air temperature in 
the North Hemisphere exhibits a significant 
change that started about 1970 and show strong 
evidences that an increment of air temperature in 
the North Hemisphere occurred in 1998.  The 
major Caribbean islands also exhibit a significant 
increment in the air temperature, with the 
exception of Cuba that exhibits a change in 2002.  
A significant increment in the number of 
hurricanes, and this increment was identified in 
2002.  There is also strong evidences that the 
number of tropical storms that do not reach the 
hurricane stage exhibit a significant change that 
occurred in 2005 and the total number of tropical 
storms and hurricanes exhibit a significant change 
that occurred in 2001. 
 

The local climate change will be a relative 
change depending on the baseline or the 
reference point.  However, when the change is 
extremely large the base line may not affect the 
detection time. 
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