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1. INTRODUCTION  
 
     The Community Multiscale Air Quality 
model (CMAQ) predicts concentration fields 
of pollutants emitted into an evolving 
dispersive and chemically- reactive 
atmospheric environment.  It is a property of 
such models that their quantitative outcomes 
are dependent on the selection of the grid cell 
size.  For increased spatial resolution, 
methods can include adaptable grid meshes or 
“nested” sub-domains with decreasing grid 
sizes. While grid size can be user specified to 
be smaller than 1 km, requirements satisfying 
turbulence closure assumptions for scales less 
that 1 km are unsatisfied for typical boundary 
layers (Lumley and Panofsky, 1964).  Thus, 1 
km is considered a lower limit for models like 
CMAQ and its meteorological processor 
MM5. 
 
     Whatever is the finest grid size chosen, the 
CMAQ model predicts a single value for each 
grid cell for the hour of simulation. 
Unresolved spatial details,    called sub-grid 
variability (SGV), exist within the grid cells. 
Obtaining information on SGV can be   
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obtained for specialized situations with 
techniques such as modeling large buoyant 
stack plumes with Plume-in Grid (PinG) 
formulations (Karamchandani et al., 2002). 
Typically, however, most grid modeling is 
performed without explicit model provisions 
and representations of SGV. 

     There are various reasons for SGV in grid 
models.  Grid models typically disperse   
emissions evenly across each grid cell. 
However, within-grid concentration variations 
exist because the real atmosphere does not 
disperse emissions homogeneously into grids. 
Thus, the resulting concentration 
inhomogeneities will yield distinct 
concentration distributions whose 
characteristics will depend on the source type, 
strength, and location in the grid, and the 
dispersion strength of the atmosphere. 
Dispersion in the real atmosphere varies 
temporally and spatially across individual grid 
cells because of within-grid variations in the 
meteorological variables and dispersion 
parameters that arise from differences in the 
land-use of the underlying surfaces, and the 
presence of heterogeneous features, such as 
buildings, street canyons, vegetation, soil 
moisture, or impervious surfaces. Significant 
SGV can also be caused by complex 
chemical-dynamical interactions in the PBL 
as a result of the within-grid inhomogeneities 
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of chemical mixtures.  Herwehe (2000) using 
a Large-Eddy Simulation model coupled with 
photochemistry (called LESChem) discussed 
and demonstrated how these processes 
contribute to SGV in air quality modeling. 

      There are several situations where 
considering SGVs may be important.  For 
example, when comparing model predictions 
against observations, there will be differences 
between what is simulated and what is 
measured (Ching et al., 2005). This impacts 
the use of modeling for attainment 
demonstrations and model evaluation studies. 
Additionally, grid model simulations, being 
wave-number limited may not accurately 
characterize “hot spots” and may 
underestimate human exposure.   

     Several approaches are being investigated 
with the goal of describing and 
parameterizing SGV characteristics so they 
can be utilized in application assessments, (1) 
running CMAQ at urban scales (Ching et al., 
2004a), (2) developing a hybrid approach that 
combines local scale dispersion modeling 
with CMAQ, (3) application of LESChem 
((Herwehe, 2000) and (4) incorporating 
outputs from building scale and physical 
modeling studies.  

     Recognizing the existence of SGVs and 
assuming an eventual capability to model 
SGVs, we ask two questions: (1) how can 
SGV information be utilized? and (2) what air 
quality issues can it address? The remaining 
portions of this paper address these questions. 
We address the first question in the next 
section, where a simple operational method 
for incorporating SGV information into 
CMAQ is introduced.  This is followed with 
preliminary results and a short discussion on 
potential merits of the method for several 
different applications to address the second 
question.     

APPROACH 
 

Let Cg be defined as the CMAQ gridded 
concentration values and CSGV, the SGV 
concentration distribution about its grid cell 
value. Now, define the two additional terms, 
(1) concentration adjusted for SGV effects, 
SAC, and a non-dimensional weighting factor 
f(CSGV).  Thus,  

  
SAC = Cg * f (CSGV )   (1) 
 

In principle, it would be desirable for each 
cell’s CSGV to reflect the properties of its SGV 
Distribution Function (DF).  However, 
preliminary evidence suggests that the 
distribution function for SGVs differs 
throughout the modeling domain (Herwehe et 
al., 2004), and a robust description is not yet 
available. For this exercise, we use limited 
statistical descriptions that can still provide a 
representative metric for each grid cells DF. 
We explore the following three options for the 
non dimensional weighting factor:      
 
f(CSGV)  = 1+COV    (2a) 
f(CSGV)  =  95th percentile /grid value  (2b) 
f(CSGV)  =  peak/grid value   (2c) 
 
where COV =  the standard deviation /grid 
value) called the Coefficient of Variation, 
95th (or other) percentile of the 
distribution/grid value and (3) peak of the 
distribution/grid value. The factor, 2a, differs 
from 2b and 2c because it is computed about 
its grid mean value, 2b c refer to the 
distribution itself. Results of 2a-c will be 
illustrated in the next section.  
 
3. PRELIMINARY RESULTS   
 

We illustrate the SAC methodology by 
using results of an air toxics version of 
CMAQ (Luecken et al., 2005) for a variety of 
model venues. The first case is for chronic 
exposure modeling of benzene for a one year 
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period. The second case, which is pertinent to 
acute exposure assessments, uses CMAQ 
simulations for more reactive pollutant 
species (e.g., formaldehyde) on an episodic 
basis. 

 
CASE 3.1:  CMAQ was run for the year 2001 
as a pilot study to demonstrate how to link to 
the Hazardous Air Pollution and Exposure 
Model, Version 5 (HAPEM5) a screening 
model for exposure assessment (Ching et al., 
2004b). Annual results for CMAQ are shown 
in Figure 1a (only grids for Philadelphia 
County are displayed).  We chose benzene for 
this illustration because mobile emissions are 
a primary source category in this application. 
To resolve concentrations fields near 
roadways, we applied the ISCST3, a local 
scale modeling to mobile source emission  
allocated to individual road links (road 
segments).  The roadway network is indicated 
in Figure 1.  The distribution of the roadways 
varies greatly in density and pattern across the 
county. The ISCST3 model predicted annual 
average benzene concentrations at 200 m 
receptor spacing, thus providing the statistical 
descriptions of the concentration distributions 
to ( but not altering the value of) the 
individual CMAQ grid cells.  Figure 1b and 
1c shows the standard deviation and the 
highest value (maximum or peak).  
 
     For the weighting factor, the descriptive 
statistics for SGV pertinent to this paper were 
prepared for each of the CMAQ grid cells.  
Figure 1 (d, e and f) shows results for SGV 
weighting functions, 2 a, b and c. In Figure 1f, 
the 95th percentile values of the distribution 
for each 4 km cell are included; exposure 
models typically use the 95th percentile as the 
statistical parameter of the general 
distribution of concentrations when 
introducing variability information.  In the 
example shown in Figure 1f, the implication 
is that modeled exposure and population risk 

for benzene will increase by a factor which 
ranges from 1-5 as shown in Figure 1f.   
 

For the annual benzene concentrations, 
the SGVs represented by peak/mean ratios are 
about an order of magnitude greater than the 
values of the COVs. We observe that spatial 
distribution of the various SAC factors is 
qualitatively similar across the County. All 
SAC factors are highly variable across the 
modeling domain. The SAC factors are lower 
in downtown areas with a high density of 
local roads and also high levels of mean 
concentrations. In other areas, SAC factors 
are variable and can be much higher in 
magnitude. 
 
    The comparison of SAC is shown in 
Figures 2 and 3 for two different grid sizes, 
12 and 4 km grid sizes, respectively.  Thus, 
while better able to discern the hot spot areas, 
it is clear that the results are sensitive to the 
size of the modeled grid used in the 
assessment.  
 
CASE 3.2:   The CMAQ grid at 1 km size 
was used to derive SGVs for a reactive 
pollutant species, formaldehyde. Results 
shown in Figures 4 and 5 are from nested runs 
at 1 km grids for a domain encompassing the 
State of Delaware and were prepared using 
outputs for July 2001 based on the 4 and 12 
km runs from Case 3.1. SGVs were 
determined by aggregating information from 
144 1-km grid cells in each of the 12 km cells. 
Time series are shown for three selected 12 
km grid cells; two were of urban land use type 
and the third considered rural. Urban site (A) 
is just to the west of and urban site (B) was 
centered over Wilmington, DE.  Rural site, 
(C) is located in Sussex County, Maryland, 
about halfway down and adjacent to the MD-
DE border.  In Figure 4, the time series of 
formaldehyde (HCHO) is shown for the 
CMAQ 12 km simulations. The time series 
for the three sites correlate with each other in 
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tracking the episodic swings during the month 
of simulation. The 95th percentile of the SGV 
as the weighting coefficient and resulting 
SAC are displayed for these grid locations. 
The time series results are shown on the top 
and the distributions in box-whisker format 
shown on the bottom. Generally, the grid 
concentrations and its SAC are larger for the 
urban grids than the rural grids. Figure 5 
compares the time series of SAC using the   
95th percentile of the SGV Distribution for 
HCHO for urban site (A).   

 
4. SUMMARY AND DISCUSSION  
 

We have shown examples to introduce 
SGV as outputs with CMAQ results 
embodied in Equation 1. We have illustrated 
the methodology using three indicators of 
SGVs, the ratio of standard deviation, the 95th 
percentile and the peak-to-mean values to the 
gridded concentrations from CMAQ at 12 km 
grid sizes. The SGVs for the relatively inert 
species, benzene, were obtained using local 
scale modeling. For the reactive species, 
HCHO, the fine scale details were obtained 
using CMAQ at a 1 km mesh size; however, 
we surmise that the SGV for HCHO will 
increase when contributions from both local 
scale modeling of primary emissions and the 
SGV variability due to coupled chemistry and 
turbulence are introduced. We have utilized 
various statistical descriptors as examples of 
the SGV distributions including their 
normalized standard deviation, peak, and 
percentile values. We find that these simple 
ratios can vary greatly across urban area 
modeling domains.   

 
These early findings reveal that SAC 

results can be significantly larger than its 
parent CMAQ simulations.  Their implication 
is for models to be able to predict a greater 
risk potential to populations exposed to air 
pollutants than from standard model results. 

The following are three areas may benefit 
from the introduction of SAC methodology: 
(1) The SAC method provides more 
representative and defensible results for 
improved air toxics exposure modeling and 
their risk assessments for an improved 
characterization of toxics hot spots in the 
modeling domain. (2) For model evaluation, 
comparisons between model predictions from 
a grid volume to observations taken at a point 
could be based on a distribution of SGV grid 
values rather than a single cell value. Even 
though it is understood that the stochastic 
component imbedded in an observation can 
never be simulated by deterministic models 
and the SGV approach does not address that 
fundamental problem, the introduction of 
SACs can help establish upper and lower 
bounds for model evaluation studies.  (3) It 
will be of interest to consider introducing 
SAC concepts to model attainment 
demonstrations required for State 
Implementation Plans.  Under the provisions 
for a Weight-Of-Evidence (WOE) analysis, 
we suggest that SACs can provide an 
improved means for assessing and applying 
Relative Reduction Factors (RRFs) and future 
design values (DVFs). Per the Draft ozone 
modeling guidance, RRF is a single number, 
and it does not account for the SGV in the 
maxima of the future and base case. The 
application of SAC to the RRF could provide 
a range of DVFs.  Exploratory studies are 
needed to determine what statistic provides a 
reasonable range of values for the RRF.  The 
upper bound of the DVF would favor greater 
protection, while the lower bound would 
favor less protection.  

  
SGV modeling is in its development 

stage. More model research and community 
dialogue will be needed to develop tools and 
methods for determining SGVs and 
subsequently in formulations for use of SGVs 
in practical modeling applications. The 
modeling of SGV for reactive species will 
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require modeling methods, such as coupled 
Large-Eddy Simulations with photochemistry 
models (e.g., LESCHEM, Herwehe, 2000) to 
provide a greater range of SGVs than can be 
obtained using fine scale CMAQ modeling 
alone. Local scale model tools should have 
the capability to accurately model dispersion 
of pollutants, especially those sources 
contributing to hot spots.  
     In addition to improving the tools for 
modeling the SGVs, we feel it is also 
important to derive parameterizations from 
gridded distributions to provide a fuller 
expression of the type and shape of the 
distribution functions for practical 
applications (Herwehe, et al., 2004). Also,      
this paper focused on a methodology as 
applied to concentration modeling. In 
principle, one could consider generalizing this 
approach to emission and meteorological grid 
model simulations. 
 
Disclaimer:  The research presented here 
was performed under the Memorandum of 
Understanding between the U.S. 
Environmental Protection Agency (EPA) and 
the U.S. Department of Commerce's National 
Oceanic and Atmospheric Administration 
(NOAA) and under agreement number 
DW13921548.  This work constitutes a 
contribution to the NOAA Air Quality 
Program.  Although it has been reviewed by 
EPA and NOAA and approved for 
publication, it does not necessarily reflect 
their policies or views. 
 
REFERENCES  
 
Ching, J., S. DuPont, J. Herwehe, T. Otte, A. 
Lacser, D. Byun, and R. Tang, 2004a: Air 
quality modeling at coarse-to-fine scales in 
urban areas.  Preprints, Sixth Conference on 
Atmospheric Chemistry: Air Quality in 
Megacities, January 11-15, 2004, Seattle, 
Washington. Am Meteorol Society, Boston. 
 

Ching, J., T. Pierce, T. Palma, W. Hutzell, R. 
Tang, A. Cimorelli, and J. Herwehe, (2004b). 
Linking air toxics concentration from CMAQ 
to the HAPEM5 exposure model at 
neighborhood scales for the Philadelphia area 
6th Urban Environment Symposium, Paper 
J4.4 August, 2004, Vancouver, BC American 
Meteorological Society, Boston. 
 
Ching, J., J. Herwehe and J. Swall, 2005: On 
joint deterministic grid modeling and sub-grid 
variability conceptual framework for model 
evaluation, Submitted to Atmos. Env . 
 
Herwehe, J.A., 2000:  A numerical study of 
the effects of large eddies on trace gas 
measurements and photochemistry in the 
convective boundary layer.  PhD dissertation, 
Department of Atmospheric Sciences, 
University of Alabama in Huntsville. 
 

Herwehe, J.A., J.K.S.Ching and J. L. Swall 
(2004): Stochastic description of subgrid 
pollutant variability in CMAQ. Preprints, 3rd 
Annual Models-3 User's Conference, October 
18-20, 2004, Chapel Hill, NC Community 
Modeling and Analysis System, CD ROM 5.3 
(2004). 
 
Karamchandani, P., C. Seigneur, K. 
Vijayaraghavan, and S-Y Wu, 2002: 
Development and application of a state-of-
the-science plume in grid model.  J. Geophys. 
Res. 107 (D19), 4403, doi: 10. 1029 
/2002JD002123.    
 
Luecken, D.J., W.T. Hutzell, and G.J. Gipson, 
2005: Development and analysis of air quality 
modeling simulations for hazardous air 
pollutants.   Atmospheric Environment (in 
review). 
 
Lumley, J. L., and H.A. Panofsky, 1964: The 
Structure of Atmospheric Turbulence.  
Monographs and Texts in Physics and 



 6

Astronomy, Vol XII.  Interscience Publishers, John Wiley and Sons, New York,  239 pg. 



 7

 
Figure 1. Benzene simulation results from CMAQ for annual (2001) simulations using 4 km grid 
size.  Included are the (a) mean [µg/m3], (b) standard deviation, STD [µg/m3], (c) peak [µg/m3], 
and SGV dimensionless factors for: (d) COV, (e) Peak/mean, and (f) 95th percentile/mean.  The 
SGV values are derived from ISCST3. The road links are shown as background.  
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Figure 2. Benzene concentrations [µg/m3] from annual (2001) CMAQ simulations using 12 km 
grid size: (a) grid cell mean values [µg/m3], and various SGV adjustment factors: (b) 1+COV, (c) 
peak to mean ratio, and (d) 95th percentile to mean ratio.  The SGV values are derived from 
ISCST3. The road links are shown as background.  
 
 



 9

 
Figure 3. Benzene concentrations from annual (2001) CMAQ simulations using 4 km grid size: 
(a) grid cell mean values [µg/m3], and various SGV adjustment factors: (b) 1+COV, (c) peak to 
mean ratio, and (d) 95th percentile to mean ratio.  The SGV values are derived from ISCST3. The 
road links are shown as background.  
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Figure 4.   CMAQ time series (left side) and SGV weighting function (middle) and SAC 
(right side) for 95th percentile of SGV for HCHO for July 2001.   Results are for three 12 
km cells, Urban cell (A) west of Wilmington DE )(black), Urban cell (B) for Wilmington 
DE (red)  and  Upwind rural cell (C) (green).  
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Figure 5.  Time series from CMAQ (12km grid concentrations from aggregation of 1 km 
cell values) simulations and weighted results for 95th percentile SGV of HCHO from July 
1 to July 31, 2001.  Results are for an urban grid cell (A of Figure 4) of 12 km size 
located west of Wilmington DE.   
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