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1 INTRODUCTION

The prediction of precipitation amount is argua-
bly the greatest challenge facing the weather forecas-
ter today. Moreover, this weather element often holds
the greatest interest to the general public ; indeed, the
amount of precipitation anticipated is often the only
thing people care about when they consult the fore-
cast. It is also of paramount importance to a number
of sectors vital to the economy : agriculture, transpor-
tation, and utilities to name but a few.

Crude attempts to quantify the uncertainty in-
herent in precipitation forecasts, conveyed in the form
of the probability of precipitation occurrence, date back
well before the development of ensemble prediction sys-
tems (EPS’s). However, with the advent of the EPS
into operational use, a much more complete elucida-
tion of the probabilistic nature of a weather forecast is
now possible, with the potential of supplying a great
deal more information than is contained in a determi-
nistic forecast.

An EPS produces a set of precipitation forecasts,
each corresponding to a perturbation of the initial state
from the analyzed state of the atmosphere, in an at-
tempt to capture the uncertainty intrinsic to the meteo-
rological observations used to initialize the integration
of the NWP model. A single deterministic precipitation
forecast is thus replaced with a distribution intended
to model forecast uncertainty, the latter arising from
the inevitable error in the meteorological observations
needed to initialize the model and, in the case of the
Canadian EPS, imperfections in the model itself.

In this paper we examine EPS precipitation fore-
casts from the Canadian ensemble forecast system by
validating these precipitation forecasts against surface
station reports from across the country. In addition
we explore the impact of constructing smoothed pdf’s
using nonparametric asymmetric kernel density estima-
tors. In the second section of the paper the forecast and
observational data used in the study are briefly descri-
bed. In section 3 we outline the nonparametric models
used to smooth the ensemble samples, while in section
4 some preliminary results are presented. The final sec-

tion includes a discussion of the results and outlines
some possible avenues for future work.

2 DATA

EPS forecasts are generated each day at the Ca-
nadian Meteorological Centre (CMC) of the Meteoro-
logical Service of Canada (MSC), integrated from an
analysis at 00 UTC. The control solution is obtained
from the Spectral Finite Element model (Ritchie and
Beaudoin, 1994; Buizza et al., 2005), as are 8 of the
perturbed members of the ensemble. The other 8 per-
turbations are produced from the same Global Envi-
ronmental Multiscale (GEM) model (Côté et al., 1998)
which generates the short- and medium-range determi-
nistic forecasts disseminated by the CMC, albeit on a
slightly coarser grid. In 2001 the resolution of the spec-
tral members was improved from TL95 to TL149 and
that of the GEM members from 1.875◦ to 1.2◦ (Pelle-
rin et al., 2003; Buizza et al., 2005). In January 2005
the ensemble Kalman filter method was incorporated
into the assimilation cycle for the operational EPS. We
have therefore elected to restrict the EPS forecast data
considered in this analysis to the period between Au-
gust 1, 2001 and December 31, 2004.

The gridded EPS precipitation forecasts were inter-
polated to the locations of observation stations from
across the country (see Fig 1.). The 6-hourly preci-
pitation amounts in the synoptic reports from these
stations were summed to produce the observational re-
cord of precipitation amount, for accumulations over 1
to 10 days. Some rudimentary screening was applied to
this observational data - station reports of unrealisti-
cally large precipitation amounts were culled, and cer-
tain stations were excluded from consideration based
on egregiously unreasonable time series or suspected
systemic instrumentation defects.
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Figure 1. Locations of stations supplying observational data.

3 MODELLING THE PDF

Producing only 17 precipitation forecasts for a given
forecast projection, at a given location, the Canadian
EPS makes available a forecast sample which is but a
third the size of the sample available from the opera-
tional ECMWF system which currently consists of 51
members (Buizza et al., 2005). Hence if we were to
restrict ourselves to the empirical cumulative distribu-
tion function (ecdf) derived directly from the sample of
member forecasts then the resolution of the associated
probabilistic forecast model would be coarser than 5%.
In light of this consideration, as well as the encouraging
results reported in Wilks (2002), we decided to explore
the feasibility of modelling the pdf associated with the
sample of ensemble forecasts.

3.1 Gamma kernel density estimates

Precipitation amount is often treated as a Gamma
random variable with probability density function, in its
two-parameter form, given by

fγ(x; α, β) =

{
1

Γ(α)βα xα−1 e−
x
β ∀x≥0

0 ∀x<0

where Γ is the gamma function and α,β are referred
to as the shape and scale parameters, respectively. The
Gamma distribution evinces pronounced positive skew-
ness ; indeed for α < 1 there is a singularity at the
origin, while for α > 1 the distribution possesses a
non-zero mode which increases with increasing α.

While precipitation climatologies are typically well
rendered by the Gamma distribution, an EPS member’s
QPF can be considered as a random variable whose pdf
describes the probability of precipitation amount condi-
tional upon the state of the control used to initialize
the ensemble forecast. As such, they do not necessa-
rily follow a Gamma distribution. We therefore resorted
to kernel density estimators to construct nonparame-
tric approximations to the pdf representing the EPS
QPF’s.
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Figure 2. Dependence of fγ on α.

While the EPS member QPF’s need not in gene-
ral be Gamma random variables, their support is ob-
viously confined to [0,∞), thereby rendering Gaussian
kernels unsuited to the construction of a kernel den-
sity estimator for the pdf. This is particularly true for
precipitation accumulations over smaller time intervals,
in which case the mass of the distribution preponde-
rates near the origin (for forecasts of precipitation over
sufficiently long intervals the centre of the distribu-
tion will be displaced suffciently far from the origin as
to permit adequate representation with Gaussian ker-
nels). Rather than apply a transformation such as Wilks
employed for surface winds and proposed for precipita-
tion amount, whereby the distributions of the orginal
weather elements are mapped to Gaussian distributions
(Wilks, 2002), we opted for a more direct approach



using gamma kernels. In particular the pdf of the EPS
QPF’s was modelled by the gamma kernel density es-
timators prescribed in Chen (2000).

In kernel density estimation a probability density
function, or kernel, is associated with each data point
in the sample selected from the population whose
pdf we seek. Like the more familiar Gaussian kernel,
Chen’s Gamma kernels possess a single maximum loca-
ted at the associated data point. Unlike their Gaussian
counterparts the Gamma kernels are asymmetric, this
asymmetry becoming increasingly pronounced, and the
width of the kernels increasingly narrow, as the data
point on which they are centred approaches the origin.
For data points right at the origin, corresponding to a
forecast of nil precipitation, the shape factor of the as-
sociated Gamma kernel is less than 1 (see Fig 2.) and
the concomitant maximum at the origin is actually a
singularity.

The kernel density estimator f̂ is obtained from the
individual kernels by taking their average over the data
points available from the sample

f̂Γ(x) ≡
1

n

n∑

i=1

fγ(x;
xi

h
+ 1, 1/h) (1)

where fγ is the gamma probability density, h is the
bandwidth, n is the size of the sample used to es-
timate the probability density, and the xi are the
sample points, which in our application are just the
ensemble member precipitation forecasts. An example
of a Gamma kernel density estimator, with its consti-
tuent kernels, can be seen in Fig 3.

3.2 Bandwidth determination

While the kernel density estimator (KDE) is a non-
parametric model for the pdf, one parameter does re-
main to be determined, namely the bandwidth h. The
magnitude of the bandwidth controls the amount of
smoothing effected by the KDE on the raw data com-
prising the sample of ensemble member forecasts. The
larger the bandwidth, the larger the relative width of
the Gamma kernels, the greater the influence of each
associated data point on the entire KDE, and the grea-
ter the smoothing.

For Gaussian KDE’s a simple closed-form expres-
sion for the bandwidth which minimizes the mean in-
tegrated square error (MISE) of the density estimator,

in the asymptotic limit of arbitrarily large sample sizes,
is given by

hopt =

(
4

3

) 1

5

σ n− 1

5 (2)

where σ is the standard deviation of the population and
n is the size of the sample.
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Figure 3. Construction of the gamma kernel density estimator

The above bandwidth generally works well in the
construction of KDE’s to distributions which are uni-
modal and roughly symmetric. However, the distribu-
tions of the EPS forecasts cannot a priori be assumed to
be unimodal. Furthermore, their distributions can pos-
sess considerable positive skewness, particularly for pre-
cipitation accumulated over shorter intervals. For dis-
tributions evincing such deviations from normality the
normal scale bandwidths such as are obtained from (2)
tend to be too large and thereby oversmooth the data



(Wand and Jones, 1995). We thus explored the cross-
validation methods prescribed in Silverman (1986) for
the determination of a more appropriate bandwidth.

The first step in cross-validation methods is the
construction of the functions f̂−i defined by

f̂−i(x) ≡
1

16

∑

j 6=i

fγ(x;
xj

h
+ 1,

1

h
) (3)

which are simply the KDE’s obtained from the original
sample of EPS forecasts except that the data point xi

has been withheld. xi can then be employed as an in-
dependent data point to test the density estimate f̂−i,
yielding the likelihood f̂−i(xi). The least-squares cross-
validation (lscv) bandwidth is obtained by minimizing
the expression M0(h) defined by

M0(h) ≡

∫

f̂2
−

2

n

∑

i

f̂−i(Xi) (4)

with respect to h, which is equivalent to determining
that bandwidth which minimizes the integrated square

error
∫ (

f̂ − f
)2

in f̂ (Silverman, 1986).
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Figure 4. Reliability table for 1-day precipitation/24-hour projection
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Figure 5. Reliability table for 1-day precipitation/5-day projection

4 PRELIMINARY RESULTS

In order to validate the precipitation forecasts from
the Canadian EPS we computed reliability diagrams,
Brier Skill scores, and ROC areas (Stanski et al., 1989)
to measure the quality of the EPS forecasts against
surface station reports and gauge the impacts of fitting
the EPS member forecasts to a Gamma KDE model.
Thus in Fig. 4 can be seen the reliability diagram for
the raw EPS probability forecasts of 24-hour precipita-
tion at a forecast projection of 24 hours, along with the
forecasts obtained from the Gamma KDE models using
the optimal Gaussian and least-squares cross-validation
bandwidths. Since the Canadian EPS produces samples
of 17 members, resulting in a discrete range of 18 pos-
sible probability forcasts, 9 bins were used to construct
the reliability tables in order to ensure a fair compa-
rison between the empirical and fitted forecasts while
attempting to keep the noise in the tables to a mini-
mum (Candille and Talagrand, 2005). The horizontal
line corresponding to an observed relative frequency of
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Figure 6. Reliability table for 1-day precipitation/7-day projection

roughly 15% represents the sample climatology, while
the line bisecting the angle between this line and the
line having unit slope delineates the skill vs. no-skill
boundary.

The 24 hour forecast shows quite good reliability,
with an over-forecasting bias at increasing forecast pro-
babilities but skill over the whole domain except for the
bin corresponding to the lowest forecast probability,
where the EPS also evinces a slight over-forecasting
bias. By 120 hours the bias in the lowest probability
forecasts has disappeared while the reliability in the
rest of the bins has degraded, but the forecasts are still
demonstrating skill for all but the lowest probability
bins. In Fig. 6 it is clear that by 168 hours reliability
has deteriorated to the point that the forecasts possess
little skill.

Whereas for density estimators constructed from
symmetric kernels the asymptotic bias is proportional
to the curvature of the true density (Wand and Jones,
1995), the bias in the Gamma kde’s is slightly more
complicated, given by (Chen, 2000)

Ef̂Γ(x) − f(x) = h

{

f ′(x) +
1

2
xf ′′(x)

}

+ o(h) (5)

For precipitation accumulation over one day the beha-
viour of the distribution near the origin can reasona-
bly be expected to resemble the Gamma density with
shape less than 1, resulting in a negative bias near the
origin. Hence the population of the lowest probability
bin of the KDE models is smaller than that of the uns-
moothed EPS forecast, as is evident in the histograms
displayed in the reliability table of Fig. 4. With increa-
sing forecast probability the slope of the true density
diminishes while the moment of its curvature becomes
increasingly positive, and the populations of the bins
for the KDE forecasts become larger than those of the
corresponding bins of the raw EPS forecast.

Hence the effect of the smoothing introduced by
the KDE models is to push the distribution towards
higher probabilities. This results in somewhat sharper
forecasts from the KDE models at the upper end of the
spectrum with no significant degradation in reliability,
at the cost of lower reliability for forecasts of interme-
diate probabilities. The least-squares cross-validation
bandwidth is generally around half the normal scale
bandwidth, thus its performance is intermediate bet-
ween that of the empirical EPS forecast and the KDE
model fitted using the normal scale bandwidth.
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Figure 7. Brier Skill Score as a function of forecast projection



Brier Skill Score − reliability
 24−hour precipitation   threshold: 5 mm

forecast projection (days)

B
rie

r 
S

ki
ll 

S
co

re
 −

 r
el

ia
bi

lit
y

1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

optimal Gaussian
least−squares
 cross−validation
empirical

Figure 8. Reliability as a function of forecast projection

Brier Skill Score − resolution
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Figure 9. Resolution as a function of forecast projection

The behaviour of the Brier Skill Score with increa-
sing forecast projection can be observed in Fig 7 where
it is seen that the EPS forecasts have little skill at a
forecast projection of a week or more. The skill of the
modelled forecasts is inferior to the unsmoothed EPS
forecasts at all projections, becoming increasingly infe-
rior with increasing forecast projection.

The Brier score BS can be resolved into contri-
butions from the reliability, resolution, and uncertainty
of the forecast system (Murphy, 1973; Stanski et al.,
1989) :

BS ≡
1
N

N∑

i=1

(fi − oi)
2

= 1
N

b∑

k=1

Nb∑

i=1







(fk − ok)
2

︸ ︷︷ ︸

reliability

− (ok − o)
2

︸ ︷︷ ︸

resolution

+ (o − oki)
2

︸ ︷︷ ︸

uncertainty







Area under ROC curve
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Figure 10. ROC areas for 5mm threshold, as a function of projection
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Figure 11. Reliability table for 10-day precipitation/10-day projection

where N is the total number of pairs of probabilistic
forecasts fi and verifying binary observations oi, b is
the number of bins, fk is the forecast representative of
bin k, given by the forecast at the centre of the bin, ok

is the mean of the observations corresponding to the
forecasts falling within bin k, o is the mean of all the
observations in the sample, and oki is the ith of Nb

observations in bin k.
Normalizing the reliability and resolution compo-

nents by the uncertainty, which is just the sample va-
riance, we see upon comparing Figs. 8 and 9 that the
superiority in the Brier skill score of the raw EPS fore-
casts over the smoothed models derives from its super-
ior reliability. The resolution of all three models is vir-
tually indistinguishable and diminishes rapidly with in-
creasing forecast projection. The difference in reliability
between the three models increases dramatically with
increasing forecast projection, the reliability of the raw
EPS forecasts evincing only a very weak dependence
upon forecast projection, which is typical of current
operational EPS’s (Candille and Talagrand, 2005).

The area under the receiver operating characteris-
tic (ROC) curve (Harvey et al., 1992; Stanski et al.,
1989; Mason, 1982) is plotted as a function of forecast

projection in Fig. 10. This area measures the ability of
the forecast systems to discriminate between the occur-
rence or non-occurrence of precipitation exceeding the
given threshold, in this case 5 mm. As can be seen there
is little difference between the ROC areas of the three
sets of forecasts. The area diminishes with increasing
forecast projection, dropping below the no-skill mark
of 0.7 for forecast lead times of 7 days.

In Fig. 11 can be seen the reliability table for fo-
recasts of precipitation accumulated over a period of
10 days, again using 5 mm for a threshold. The EPS
evinces good reliability, but skill only in the extreme
probability bins. The behaviour of the smoothed mo-
dels relative to the raw EPS forecasts is as before. The
KDE models do appear to be more reliable at the low
end of the spectrum, but the population of these bins is
quite small so considerable caution must be exercised
when drawing conclusions.

5 Discussion

Our preliminary results indicate that the precipita-
tion forecasts from the Canadian EPS are quite reliable,
evincing only very gradual degradation with increasing
forecast projection. The smoothing of the raw EPS fo-
recasts by fitting asymmetric kernel density estimators
to them introduces bias into the resulting forecasts
(Wand and Jones, 1995; Silverman, 1986), which is re-
flected in reliabilities which are inferior to the original
EPS. The improvement in the resolution of the KDE
forecasts with respect to the raw EPS, on the other
hand is barely perceptible, and the skill of the fitted
KDE forecasts is thus generally inferior to the origi-
nal EPS output, the smoothed forecast models lagging
further behind the raw EPS with increasing forecast
projection. However, the reliability of the kernel den-
sity estimators is competitive with that of the raw en-
semble forecasts at the extremities of the distributions,
while at the same time producing somewhat sharper
forecasts in the upper end of the spectrum.

Moreover, while the normal scale bandwidth (re-
ferred to as the ”optimal Gaussian”) was expected to
be too large, the bandwidth obtained from the least-
squares cross-validation algorithm also seems to be si-
gnificantly too large, resulting in oversmoothing of the
resulting KDE. Further work is therefore needed to de-
termine a more optimal bandwidth, either by recourse



to another of the algorithms proposed in Wand and
Jones (1995) and Silverman (1986) or, perhaps simply
searching for that bandwidth which minimizes the Brier
skill score. The bandwidth is crucial to the quality of
the kernel density estimators - a more propitious choice
of bandwidth could dramatically improve the quality of
these forecasts.

The effects of stratification by season and region
is currently underway and results of this facet of the
investigation should be available soon.
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