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1. Introduction 
 

To make optimal decisions, end-users of decision support systems require information 
accurately describing the uncertainty of the underlying weather forecasts. Air temperature, dew 
point temperature, and wind speed are critical surface weather variables in many economic 
sectors. The generation of sharp and calibrated probabilistic forecasts and their effective 
presentation to decision makers are current research challenges. This paper addresses the first of 
these challenges by describing an operational probabilistic forecast system developed at 
NCAR/RAL. This system is a probabilistic extension of DICast, an automated consensus 
forecast system which serves as the operational backbone for several major US weather 
providers. 

Today, forecasts of these continuously-valued weather surface variables are commonly 
generated and presented as deterministic (scalar) values. For example, the maximum temperature 
2 days from now will be (exactly) 25ºC. A more complex forecast representation is required 
describe the uncertainty in the forecast. Rather than forecasting a scalar, a probabilistic forecast 
ideally takes the form of a probability density function (pdf). Ensemble methods provide a 
natural approach for creating these types of forecasts. However, to create meaningful forecasts 
using ensemble methods generally requires production of a large number of realizations of a 
model forecast, which can be expensive in time and other resources. Moreover, calibration of the 
ensemble forecasts is often a concern. 

The DICast probabilistic forecast system considers multiple numerical weather model 
inputs and uses a multi-model or “poor man’s” ensemble approach. Each model is interpreted 
statistically to generate individual pdfs for the variables of interest (e.g., temperature). The 
system then combines the resulting forecast distributions using weights based on the past 
forecast performance of each of the models’ pdf forecasts. The resultant consensus forecast is 
again a pdf. This weighting procedure allows generation of multimodal forecast distributions.  

The main conceptual difference between this probabilistic forecast system and the 
“traditional” scalar DICast system is that the probabilistic system produces and combines pdf’s 
rather than scalars. It is well understood that the combination of scalar forecasts produces 
statistically superior forecasts. The goal of this paper is to demonstrate that the same can be true 
for probabilistic forecasts. 

 
2. Data 

 
This study used Eta and GFS numerical weather prediction (NWP) model data generated 

at NCEP. For both of these models, only the 12Z forecast cycle data was considered. With 
computational and communication latency, the forecasts generated would have been available at 
roughly 18Z (1300 EST) on any particular day. Raw model output from June 25, 2002 through 
May 23, 2003 was used in this study. Probabilistic forecasts were produced, based on the model 



data, from October 3, 2002 through May 23, 2003. These forecasts were produced for 18 cities 
spread across the United States. The observing station used for verification of forecasts at each of 
these cities was the METAR at one of the city’s main airports. These cities are listed in Table 1. 
For each city on each day, probabilistic 2m air temperature forecasts were produced out to 60 
hours at 3 hour intervals. At each lead time (e.g. the 9 hour forecast, valid at 21Z), there were a 
total of 4194 forecasts, that is, 233 forecast days at each of the 18 sites. 
 
Table 1 
City METAR City METAR 
Atlanta KATL Minneapolis KMSP 
Boston KBOS New York KLGA 
Chicago KORD Oklahoma City KOKC 
Cincinnati KCOV Philadelphia KPHL 
Dallas KDFW Phoenix KPHX 
Goodland KGLD Portland KPDX 
Houston KIAH Sacramento KSAC 
Kansas City KMCI Sioux Falls KFSD 
Los Angeles KLAX Washington, DC KDCA 
 
 
3. Forecast Generation Method 
 

DICast is a two step forecasting system. First, statistical techniques are used to generate 
forecasts based on the output from individual NWP models. These statistical methods are a type 
of updateable MOS in which regression equations are formulated based only on recent model 
data and observations. Once all these Dynamic MOS (DMOS) forecasts from individual models 
have been generated, DICast’s second step is applied. This integration step uses a fuzzy logic 
approach to combine the statistically generated forecasts. This combination attempts to produce 
an optimal consensus forecast. 

Analyses of regression-based forecasts of air temperature, dew point temperature, and 
wind speed have indicated that the errors are approximately normally distributed. Thus, normal 
distributions were used as a template for the pdf forecasts. The DMOS regression equation’s 
predicted value was used as the normal distribution’s mean. The distribution’s variance was 
derived from the equation’s predictive variance. This variance depends on the variance of the 
fitted equation as well as the values of the current day’s model output. The variance is naturally 
smaller near the mean of the data used to develop the regression equation. It increases when 
applied to data further from the mean of the equation development data set. This aspect of the 
pdf forecast generation is intuitively pleasing. 

However, it is not clear that this estimate of the variance from a single regression 
equation is the best choice. One would expect that the best variance to use would lie between 
zero (a deterministic forecast) and the climatological variance. This study evaluates three 
normally distributed pdfs with the same mean in order to verify the validity of the choice of the 
predictive interval variance (σp) over the alternatives σ0  and σc. That is, these two alternative 
forecasts are used as standards of comparison. The predictive interval variance typically lies 
between the two extremes during the 60-hour forecast range of this study. This provides us with 
an idea of which variance provides the “best” normally-distributed pdf forecast from a single 
NWP model. 



The second step of the DICast forecast process combines the pdfs generated from the 
individual models into a final, integrated forecast. This combination is performed using a simple 
weighted sum of the individual pdfs (e.g., Figure 1). The weights used in this study were 
generated based on the relative skills of the means of the pdfs. Clearly this approach does not 
take into account the pdfs’ spread. Weights should probably be calculated based on the 
performance of the entire pdf rather than just its mean. The weight generation process is 
currently being upgraded to generate optimal weights based on minimization of the forecasts’ 
Continuous Rank Probability Score (CRPS). The integrated pdf forecasts generated using this 
suboptimal weighting scheme are compared to the individual models’ pdfs. This part of the study 
focuses on determining whether the combination of probabilistic forecasts provides a superior 
forecast. 

 
4. Verification Methods 

 
Verification of pdfs is inherently difficult. No probabilistic forecast can be “correct” 

unless it is deterministic, that is, all of the pdf’s mass lies on a single point and the observation 
exactly matches that value. Instead, pdf verification must be based on a family or collection of 
probabilistic forecasts all made by the same method or technique. Only by evaluating the whole 
set of a family of forecasts can the characteristics of that forecast technique be determined. 

Further complexities arise in the comparison of forecast generation techniques. 
Probabilistic forecasts have many verification facets and determination of which forecast 
technique is superior is generally not completely clear. The forecasts generated by one technique 
may be better than another according to one verification measure but not another. Thus, the 
decision as to which technique is superior usually comes down to end user criteria, and this study 
looks at a variety of verification measures to provide an overall assessment of the quality of the 
forecasts. 

To more fairly evaluate forecasts from sites with differing climatologies, the pdfs were 
transformed into a “climatologically-normalized” space. That is, each pdf was transformed so 
that so that its native units were climatological standard deviations relative to the climatological 
mean. The climatological means and standard deviations applied to a pdf were site, time of day, 
and seasonally specific. This leads to a pdf with an x-axis in units of σc. This approach turns out 
to be exactly what was recommended in a recently submitted paper by Tom Hamill and a co-
author. 

The DICast pdf forecasts are evaluated using standard metrics such as the CRPS and its 
decomposition elements. The normalization process described above also allows an evaluation of 
performance for a variety of “events” ranging from extreme to near normal (seasonal). Rank 
histograms provide other insights into the forecast quality. Reliability diagrams and ROC plots 
were also examined but discussions of these are not included in this paper. 

 
5. Results 

 
Results are presented for air temperature forecasts. Results for dew point temperature, 

maximum temperature, and minimum temperature were similar. 
 

5.1 Single Model pdfs 
 



The goal of this part of the study is to examine the performance of the individual 
probabilistic forecasts from one NWP model.  

Four normally distributed pdfs are compared in this part of the study. Three of these are 
generated from the regression equation. These three use the mean from the regression equation 
and have different variances. The fourth pdf is a climatological distribution. The distributions 
will be referred to as follows: 

1. Predictive Interval Forecast     ~N(µp, σp) 
2. Deterministic Forecast      ~N(µp, σ0) 
3. Regression Mean, Climatological Variance Forecast (RMCV) ~N(µp, σc) 
4. Climatological Forecast      ~N(µc, σc) 
 
The CRPS scores for the Eta model forecasts are shown in Figure 2. The Predictive 

Interval forecast is clearly superior to the other forecasts at all lead times. In fact, its CRPS is 15-
20% lower at every lead time. The y-axis of this score has units of σc. This indicates an average 
forecast improvement that can be translated into degrees at any particular site and lead time. 

The CRPS can be thought of as an integral of the Brier Score across all possible 
thresholds. It is possible to understand where this improvement in CRPS is coming from by 
examining the Brier Scores at all thresholds (Figure 3). It can be seen that the Predictive Interval 
forecasts are much better for typical events (i.e. near the climatological mean). However, the 
improvement in CRPS is not only for common events at the expense of rare events. The 
Predictive Interval method does at least as well as or better than the other forecast techniques for 
unusual events, including those more than 2σc. from the climatological mean. 

The Brier Scores can be decomposed into the resolution, reliability, and uncertainty 
terms. These decomposition elements allow further examination of the characteristics of the 
forecasts. Figure 4 and 5 show the positively oriented resolution verification measure. These 
results again indicate that the Predictive Interval forecasts have better performance at all lead 
times. The improvement is about 8-10% better than the nearest competitor, the RMCV forecasts. 
Thus, the predictive interval method is better able to separate the observations away from the 
climatological mean. Again, the largest improvement is seen for near climatological events but 
resolution is not sacrificed for extreme events. 

The reliability decomposition shows similar results (Figures 6-7). This measure is 
negatively oriented and shows similar results for the three forecast pdfs centered on the 
regression mean. As expected, the pure climatological forecast is highly reliable. Interestingly, 
the Deterministic forecast has the best (lowest) reliability of the three alternative forecasts. This 
result is largely due to the aggregation of forecasts at 0% and 100% for the Deterministic 
forecast. The Predictive Interval forecasts at a particular threshold are more evenly spread 
throughout the [0-1] interval. This typically causes larger errors within each forecast bin. 

While the reliability of a forecast is correctable using statistical techniques, lack of 
resolution cannot be corrected. The Deterministic forecast may have better CRPS reliability 
scores but its resolution is quite poor. The Predictive Interval’s large advantage in resolution 
must be considered as a major factor when ultimately choosing a best single model forecast 
technique. 

Results for the GFS model forecasts are not shown but were quite similar. Also, although 
only the 12 hour forecast Brier Score and decompositions are shown, similar results could be 
seen at all other lead times.  

 



5.2 Pdf combination 
 
The second part of the study examines the performance of the combined forecasts, to 

evaluate whether the combination of “best” single model forecasts leads to an improved forecast. 
First we note that the integrated (combined) forecast leads to a more level rank histogram. The 
GFS and Eta forecasts are biased and underdispersive. This bias may be due to a seasonal lag 
inherent in the DMOS regression equation generation. The U-shape in these two rank histograms 
indicates that the distributions generated are not broad enough. That is, the observation falls in 
the tails of the distribution somewhat too often. While not perfect, the integrated forecast corrects 
these problems. It is less biased and better dispersed, as can be seen by its relative flatness. See 
Figure 8. 

The CRPS values for these forecasts at each lead time can be seen in Figure 9. The 
integrated forecast’s CRPS is better (lower) than either of the two predictive interval forecasts at 
every lead time. Though comparable with the Eta model at analysis time, the integrated 
forecast’s CRPS soon attains and maintains an 8%-12% improvement over the best of the others 
across the rest of the forecast period. As can be seen in Figure 10, the Brier Scores are again best 
for near climatological events for all 3 forecasts. The integrated forecast gains its edge in this 
type of event. For rare events, the Brier Scores are similar. 

The integrated forecasts’ CRPS reliability, as seen in figure 13, is better than either the 
Eta or GFS predictive interval reliability at every lead time. Beyond 6 hours into the forecast, the 
relative improvement is typically more than 10%. Meanwhile, the integrated forecasts’ 
resolution, shown in figure 11, is better than the others at every lead time except the analysis 
time where it is effectively the same as the Eta. The improvement is for the most part between 
3%-5% at all lead times. This effectively shows that the integration step can be used to 
simultaneously improve both reliability and resolution of the forecasts at all lead times. 

Breaking down the reliability (resolution) by variance, Figures 12 and 14, it can be seen 
that most of the gain in the overall CRPS reliability (resolution) is due to performance for the 
near-climatology events. For the extreme events, the integrated forecast is “best” at most but not 
all thresholds. For these rare events, the differences in the reliability (resolution) term are quite 
small. 

 
6. Conclusions 

 
Evaluation of the pdfs generated by these models indicates that they provide relatively 

reliable and skillful forecasts when compared to the deterministic forecasts and simple 
probabilistic forecasts based on climatology. In addition, the rank histograms indicate that the 
forecast spread is generally approximately correct. Integration of the pdfs provided by the two 
forecasting systems results in notable improvements, particularly with respect to the resolution 
and reliability of the forecasts. This improvement is associated with the ability of the integration 
process to apply larger weights to the forecast model that is providing the best performance. 

Results of applying this method for temperature forecasts based on only two NWP 
forecasts are encouraging; use of additional models or model realizations would be expected to 
show additional capabilities. Evaluations of forecasts for non-temperature variables such as wind 
speed are in progress; initial results indicate that application of this approach is also beneficial 
for these forecasts. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ATL 10/06/02 - 57 hr lead - Eta Wgt = 0.58 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

IntFcst

Eta

GFS

ATL 10/07/02 - 30 hr lead - Eta Wgt = 0.51

0
0.02

0.04
0.06

0.08
0.1

0.12
0.14

0.16

IntFcst

Eta

GFS

Figure 1: Two examples of pdf combination. Usually, the resultant forecast was unimodal as 
in the left hand case. However, multimodal forecasts (right) are possible. 
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Figure 2: Continuous Rank Probability Scores 
aggregated over all sites. The Predictive Interval 
forecast produces the lowest CRPS at all lead times. 

Figure 3: The Brier Score from the 12 hour forecast shown in 
Figure 2.Note that the Predictive Interval Forecasts provide 
superior forecasts for near climatological predictions and 
forecasts that are at least as good as the components for more 
extreme events. 
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Figure 4: Resolution at all lead times. The 
Predictive Interval has the highest (best) 
resolution at all lead times. 

Figure 5: Resolution for the 12 hour forecast at all 
thresholds. The Predictive Interval has the highest 
(best) resolution for near climatological events. It is 
similar for rare events. 
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Figure 8: Rank Histograms for the AVN (GFS), Eta, and Integrated Forecasts. 
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Figures 6-7: The Brier score reliability component plots show that the climatological forecast has very good (low) 
reliability as would be expected. The Deterministic forecast has the best reliability of the other 3 forecasts. 
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Figure 9: CRPS at all lead times. The integrated forecast is 
better than either of its two constituents throughout the 
forecast period. 

Figure 10: The Brier Scores making up the CRPS at a 12 
hour lead time. The integrated forecast is clearly better for 
common events. For extreme events, its performance is 
similar to the others. 
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Figure 11: CRPS resolution. After hour six, the 
integrated forecast is slightly (3-5%) better than 
the other 2 forecasts. 

Figure 12: CRPS resolution at hour 12. The 
integrated forecast is slightly better except in the 
tails where the resolutions are similar. 
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Figure 13: CRPS Reliability for all lead times. 
The integrated forecast is better at all lead 
times. 

Figure 14: CRPS Reliability shown at hour 12 
for all variance thresholds. The integrated 
forecast is better at most lead times. 
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