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1. Introduction

To make optimal decisions, end-users of decision support systems require information
accurately describing the uncertainty of the underlying weather forecasts. Air temperature, dew
point temperature, and wind speed are critical surface weather variables in many economic
sectors. The generation of sharp and calibrated probabilistic forecasts and their effective
presentation to decision makers are current research challenges. This paper addresses the first of
these challenges by describing an operational probabilistic forecast system developed at
NCAR/RAL. This system is a probabilistic extension of DICast, an automated consensus
forecast system which serves as the operational backbone for several major US weather
providers.

Today, forecasts of these continuously-valued weather surface variables are commonly
generated and presented as deterministic (scalar) values. For example, the maximum temperature
2 days from now will be (exactly) 25°C. A more complex forecast representation is required
describe the uncertainty in the forecast. Rather than forecasting a scalar, a probabilistic forecast
ideally takes the form of a probability density function (pdf). Ensemble methods provide a
natural approach for creating these types of forecasts. However, to create meaningful forecasts
using ensemble methods generally requires production of alarge number of realizations of a
model forecast, which can be expensive in time and other resources. Moreover, caibration of the
ensemble forecasts is often a concern.

The DICast probabilistic forecast system considers multiple numerical weather model
inputs and uses a multi-model or “poor man’s” ensemble approach. Each model is interpreted
statistically to generate individual pdfs for the variables of interest (e.g., temperature). The
system then combines the resulting forecast distributions using wei ghts based on the past
forecast performance of each of the models' pdf forecasts. The resultant consensus forecast is
again a pdf. This weighting procedure allows generation of multimodal forecast distributions.

The main conceptual difference between this probabilistic forecast system and the
“traditional” scalar DICast system is that the probabilistic system produces and combines pdf’'s
rather than scalars. It is well understood that the combination of scalar forecasts produces
statistically superior forecasts. The goal of this paper is to demonstrate that the same can be true
for probabilistic forecasts.

2. Data

This study used Eta and GFS numerical weather prediction (NWP) model data generated
at NCEP. For both of these models, only the 127 forecast cycle data was considered. With
computational and communication latency, the forecasts generated would have been available at
roughly 18Z (1300 EST) on any particular day. Raw model output from June 25, 2002 through
May 23, 2003 was used in this study. Probabilistic forecasts were produced, based on the model



data, from October 3, 2002 through May 23, 2003. These forecasts were produced for 18 cities
spread across the United States. The observing station used for verification of forecasts at each of
these cities was the METAR at one of the city’smain airports. These citiesarelisted in Table 1.
For each city on each day, probabilistic 2m air temperature forecasts were produced out to 60
hours at 3 hour intervals. At each lead time (e.g. the 9 hour forecast, vaid at 217), there were a
total of 4194 forecasts, that is, 233 forecast days at each of the 18 sites.

Table 1

City METAR | City METAR
Atlanta KATL Minneapolis KMSP
Boston KBOS New York KLGA
Chicago KORD Oklahoma City KOKC
Cincinnati KCOV Philadel phia KPHL
Dallas KDFW Phoenix KPHX
Goodland KGLD Portland KPDX
Houston KIAH Sacramento KSAC
Kansas City KMCI Sioux Falls KFSD
Los Angeles KLAX Washington, DC KDCA

3. Forecast Generation Method

DICast is atwo step forecasting system. First, statistical techniques are used to generate
forecasts based on the output from individual NWP models. These statistical methods are atype
of updateable MOS in which regression equations are formulated based only on recent model
data and observations. Once all these Dynamic MOS (DM OS) forecasts from individual models
have been generated, DICast’ s second step is applied. This integration step uses afuzzy logic
approach to combine the statistically generated forecasts. This combination attempts to produce
an optimal consensus forecast.

Analyses of regression-based forecasts of air temperature, dew point temperature, and
wind speed have indicated that the errors are approximately normally distributed. Thus, normal
distributions were used as a template for the pdf forecasts. The DMOS regression equation’s
predicted value was used as the normal distribution’s mean. The distribution’ s variance was
derived from the equation’s predictive variance. This variance depends on the variance of the
fitted equation as well as the values of the current day’ s model output. The variance is naturally
smaller near the mean of the data used to develop the regression equation. It increases when
applied to data further from the mean of the equation development data set. This aspect of the
pdf forecast generation is intuitively pleasing.

However, it isnot clear that this estimate of the variance from asingle regression
equation is the best choice. One would expect that the best variance to use would lie between
zero (adeterministic forecast) and the climatological variance. This study evaluates three
normally distributed pdfs with the same mean in order to verify the validity of the choice of the
predictive interval variance (o) over the alternatives 6o and oc. That is, these two alternative
forecasts are used as standards of comparison. The predictive interval variance typically lies
between the two extremes during the 60-hour forecast range of this study. This provides us with
an idea of which variance provides the “best” normally-distributed pdf forecast from asingle
NWP model.



The second step of the DICast forecast process combines the pdfs generated from the
individual modelsinto afinal, integrated forecast. This combination is performed using asimple
weighted sum of the individual pdfs (e.g., Figure 1). The weights used in this study were
generated based on the relative skills of the means of the pdfs. Clearly this approach does not
take into account the pdfs spread. Weights should probably be calculated based on the
performance of the entire pdf rather than just its mean. The weight generation processis
currently being upgraded to generate optimal weights based on minimization of the forecasts
Continuous Rank Probability Score (CRPS). The integrated pdf forecasts generated using this
suboptimal weighting scheme are compared to the individual models’ pdfs. This part of the study
focuses on determining whether the combination of probabilistic forecasts provides a superior
forecast.

4. Veification M ethods

Verification of pdfsisinherently difficult. No probabilistic forecast can be “correct”
unlessit is deterministic, that is, al of the pdf’s masslies on a single point and the observation
exactly matches that value. Instead, pdf verification must be based on afamily or collection of
probabilistic forecasts al made by the same method or technique. Only by evaluating the whole
set of afamily of forecasts can the characteristics of that forecast technique be determined.

Further complexities arise in the comparison of forecast generation techniques.
Probabilistic forecasts have many verification facets and determination of which forecast
technique is superior is generally not completely clear. The forecasts generated by one technique
may be better than another according to one verification measure but not another. Thus, the
decision as to which technique is superior usually comes down to end user criteria, and this study
looks at avariety of verification measures to provide an overall assessment of the quality of the
forecasts.

To more fairly evaluate forecasts from sites with differing climatologies, the pdfs were
transformed into a “climatol ogically-normalized” space. That is, each pdf was transformed so
that so that its native units were climatological standard deviations relative to the climatological
mean. The climatological means and standard deviations applied to a pdf were site, time of day,
and seasonally specific. This leads to a pdf with an x-axisin units of o.. This approach turns out
to be exactly what was recommended in a recently submitted paper by Tom Hamill and a co-
author.

The DICast pdf forecasts are evaluated using standard metrics such as the CRPS and its
decomposition elements. The normalization process described above also allows an evaluation of
performance for avariety of “events’ ranging from extreme to near normal (seasonal). Rank
histograms provide other insights into the forecast quality. Reliability diagrams and ROC plots
were also examined but discussions of these are not included in this paper.

5. Reaults

Results are presented for air temperature forecasts. Results for dew point temperature,
maximum temperature, and minimum temperature were similar.

5.1 Single M odel pdfs




The goal of this part of the study isto examine the performance of the individual
probabilistic forecasts from one NWP model.

Four normally distributed pdfs are compared in this part of the study. Three of these are
generated from the regression equation. These three use the mean from the regression equation
and have different variances. The fourth pdf is a climatological distribution. The distributions
will be referred to as follows:

1. Predictive Interval Forecast ~N(pp, op)
2. Deterministic Forecast ~N(pp, ©0)
3. Regression Mean, Climatological Variance Forecast (RMCV) ~N(pyp, oc)
4. Climatological Forecast ~N(uc, o¢)

The CRPS scores for the Etamodel forecasts are shown in Figure 2. The Predictive
Interval forecast is clearly superior to the other forecasts at all lead times. In fact, its CRPS is 15-
20% lower at every lead time. The y-axis of this score has units of .. Thisindicates an average
forecast improvement that can be translated into degrees at any particular site and lead time.

The CRPS can be thought of as an integral of the Brier Score across al possible
thresholds. It is possible to understand where this improvement in CRPS is coming from by
examining the Brier Scores at all thresholds (Figure 3). It can be seen that the Predictive Interval
forecasts are much better for typical events (i.e. near the climatological mean). However, the
improvement in CRPS is not only for common events at the expense of rare events. The
Predictive Interval method does at least as well as or better than the other forecast techniques for
unusual events, including those more than 26.. from the climatological mean.

The Brier Scores can be decomposed into the resolution, reliability, and uncertainty
terms. These decomposition elements allow further examination of the characteristics of the
forecasts. Figure 4 and 5 show the positively oriented resolution verification measure. These
results again indicate that the Predictive Interval forecasts have better performance at all lead
times. The improvement is about 8-10% better than the nearest competitor, the RMCV forecasts.
Thus, the predictive interval method is better able to separate the observations away from the
climatological mean. Again, the largest improvement is seen for near climatological events but
resolution is not sacrificed for extreme events.

The reliability decomposition shows similar results (Figures 6-7). Thismeasureis
negatively oriented and shows similar results for the three forecast pdfs centered on the
regression mean. As expected, the pure climatological forecast is highly reliable. Interestingly,
the Deterministic forecast has the best (lowest) reliability of the three alternative forecasts. This
result is largely due to the aggregation of forecasts at 0% and 100% for the Deterministic
forecast. The Predictive Interval forecasts at a particular threshold are more evenly spread
throughout the [0-1] interval. Thistypically causes larger errors within each forecast bin.

Whilethe reliability of aforecast is correctable using statistical techniques, lack of
resolution cannot be corrected. The Deterministic forecast may have better CRPS reliability
scores but its resolution is quite poor. The Predictive Interval’s large advantage in resolution
must be considered as a major factor when ultimately choosing a best single model forecast
technique.

Results for the GFS model forecasts are not shown but were quite similar. Also, although
only the 12 hour forecast Brier Score and decompositions are shown, similar results could be
seen at all other lead times.



5.2 Pdf combination

The second part of the study examines the performance of the combined forecasts, to
evaluate whether the combination of “best” single model forecasts leads to an improved forecast.
First we note that the integrated (combined) forecast leads to a more level rank histogram. The
GFS and Eta forecasts are biased and underdispersive. This bias may be due to a seasonal lag
inherent in the DM OS regression equation generation. The U-shape in these two rank histograms
indicates that the distributions generated are not broad enough. That is, the observation fallsin
the tails of the distribution somewhat too often. While not perfect, the integrated forecast corrects
these problems. It isless biased and better dispersed, as can be seen by itsrelative flatness. See
Figure 8.

The CRPS values for these forecasts at each lead time can be seen in Figure 9. The
integrated forecast’s CRPS is better (lower) than either of the two predictive interval forecasts at
every lead time. Though comparable with the Eta model at analysis time, the integrated
forecast’s CRPS soon attains and maintains an 8%-12% improvement over the best of the others
across the rest of the forecast period. As can be seen in Figure 10, the Brier Scores are again best
for near climatological eventsfor all 3 forecasts. The integrated forecast gainsits edge in this
type of event. For rare events, the Brier Scores are similar.

The integrated forecasts CRPS reliability, as seen in figure 13, is better than either the
Etaor GFS predictive interval reliability at every lead time. Beyond 6 hours into the forecast, the
relative improvement is typically more than 10%. Meanwhile, the integrated forecasts
resolution, shown in figure 11, is better than the others at every lead time except the analysis
timewhereit is effectively the same as the Eta. The improvement is for the most part between
3%-5% at all lead times. This effectively shows that the integration step can be used to
simultaneously improve both reliability and resolution of the forecasts at all lead times.

Breaking down the reliability (resolution) by variance, Figures 12 and 14, it can be seen
that most of the gain in the overall CRPS reliability (resolution) is due to performance for the
near-climatology events. For the extreme events, the integrated forecast is “best” at most but not
all thresholds. For these rare events, the differences in the reliability (resolution) term are quite
small.

6. Conclusions

Evaluation of the pdfs generated by these models indicates that they provide relatively
reliable and skillful forecasts when compared to the deterministic forecasts and simple
probabilistic forecasts based on climatology. In addition, the rank histograms indicate that the
forecast spread is generally approximately correct. Integration of the pdfs provided by the two
forecasting systems results in notable improvements, particularly with respect to the resolution
and reliability of the forecasts. Thisimprovement is associated with the ability of the integration
process to apply larger weights to the forecast model that is providing the best performance.

Results of applying this method for temperature forecasts based on only two NWP
forecasts are encouraging; use of additional models or model realizations would be expected to
show additional capabilities. Evaluations of forecasts for non-temperature variables such as wind
speed arein progress; initial results indicate that application of this approach is also beneficial
for these forecasts.
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Figure 1: Two examples of pdf combination. Usualy, the resultant forecast was unimodal as
in the left hand case. However, multimodal forecasts (right) are possible.
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Figure 2: Continuous Rank Probability Scores Figure 3: The Brier Score from the 12 hour forecast shown in
aggregated over al sites. The Predictive Interval Figure 2.Note that the Predictive Interval Forecasts provide
forecast produces the lowest CRPS at all lead times. superior forecasts for near climatological predictions and
forecasts that are at least as good as the components for more
extreme events.
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Figure 4: Resolution at all lead times. The Figure 5: Resolution for the 12 hour forecast at all
Predictive Interval has the highest (best) thresholds. The Predictive Interval has the highest
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Figures 6-7: The Brier score reliability component plots show that the climatological forecast has very good (low)
reliability as would be expected. The Deterministic forecast has the best reliability of the other 3 forecasts.
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Figure 8: Rank Histograms for the AVN (GFS), Eta, and Integrated Forecasts.
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Figure 9: CRPS at all lead times. Theintegrated forecastis ~ Figure 10: The Brier Scores making up the CRPS at a 12
better than either of its two constituents throughout the hour lead time. The integrated forecast is clearly better for
forecast period. common events. For extreme events, its performanceis
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Figure 11: CRPS resolution. After hour six, the
integrated forecast is slightly (3-5%) better than
the other 2 forecasts.
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Figure 13. CRPS Reliability for all lead times.
The integrated forecast is better at al lead
times.
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Figure 12: CRPS resolution at hour 12. The
integrated forecast is slightly better except in the
tails where the resolutions are similar.
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Figure 14. CRPS Reliability shown at hour 12
for al variance thresholds. The integrated
forecast is better at most lead times.
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