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1. INTRODUCTION 
 

In the era of contemporary and future ultraspectral 
sounders (e.g. AIRS (Aumann et al. 2001), CrIS (Bloom 
2001), IASI (Phulpin et al. 2002), GIFTS (Smith et al. 
2002), HES (Huang et al. 2003) etc.), better inference of 
atmospheric, cloud, and surface parameters is feasible 
for improved weather forecast and climate prediction. 
Given the large volume of three-dimensional data 
generated by an ultraspectral sounder each day, the 
use of robust data compression techniques will be 
beneficial for data transfer and archival. The physical 
retrieval of these geophysical parameters, involving the 
inverse solution of the radiative transfer equation, is a 
mathematically ill-posed problem (Huang et al. 2002), 
i.e. the solution is sensitive to the error or noise in the 
data. Therefore, there is a need for lossless or near-
lossless compression of ultraspectral sounder data to 
avoid potential retrieval degradation of meteorological 
parameters due to lossy compression. 

In this paper we present a systematic study of 
various 2D and 3D lossless compression techniques for 
the next-generation NOAA GOES-R Hyperspectral 
Environmental Suite (HES). These techniques are 
divided into transform-based, prediction-based, 
projection-based, and clustering-based methods. The 
ultraspectral sounder data features strong correlations 
in disjoint spectral regions affected by the same type of 
absorbing gases at various altitudes. To take advantage 
of this feature, a bias-adjusted reordering (BAR) data 
preprocessing scheme (Huang et al. 2004b, Huang et al. 
2005c) is used to improve compression gains of these 
state-of-the-art transform-based and prediction-based 
methods for ultraspectral sounder data. The minimum 
spanning tree (MST) reordering is also investigated. 
This paper also shows newly-developed compression 
schemes such as Lossless Multiwavelet Compression, 
Lossless Principal Component Analysis (Lossless PCA) 

(Huang et al. 2005c), Optimized Orthogonal Matching 
Pursuit (OOMP) (Rebello-Neira et al. 2002) based linear 
prediction, Predictive Partitioned Vector Quantization 
(PPVQ) (Huang et al. 2004a), and Fast Precomputed 
Vector Quantization (FPVQ) (Huang et al. 2005a) with 
optimal bit allocation, that all yield significantly higher 
compression ratios on ultraspectral sounder data than 
state-of-the-art compression schemes (e.g. JPEG2000, 
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JPEG-LS and CALIC). Furthermore, an error-robust 
data compression technique using reversible variable-
length codes (RVLCs) is presented. Results show that 
RVLCs performs significantly better error containment 
than JPEG2000 Part 2 on the standard ultraspectral 
sounder data set.  

The rest of the paper is arranged as follows. 
Section 2 describes the ultraspectral sounder data used 
in this study. Section 3 highlights the data preprocessing 
schemes, while Section 4 elaborates the various com-
pression schemes. Section 5 summarizes the paper. 
 
2. DATA 

 
The ultraspectral sounder data could be generated 

from either a Michelson interferometer (e.g. CrIS, IASI 
and GIFTS) or a grating spectrometer (e.g. AIRS). The 
ultraspectral sounder data set with 2107 AIRS channels 
was prepared at the direction of NOAA to serve as a 
standard test set for ultraspectral sounder data 
compression studies. The data is publicly available via 
anonymous ftp (ftp://ftp.ssec.wisc.edu/pub/bormin/Coun-
t).  It consists of 10 digital count granules, five daytime 
and five nighttime, selected from representative 
geographical regions of the Earth. Their locations, UTC 
times and local time adjustments are listed in Table 1.  

This standard ultraspectral sounder data set is 
obtained from NASA AIRS digital counts collected on 
March 2, 2004. The AIRS data includes 2378 infrared 
channels in the 3.74 to 15.4 µm region of the spectrum. 
A day's worth of AIRS data is divided into 240 granules, 
each of 6 minute durations. The AIRS digital count data 
ranges from 12-14 bits for different channels. More 
information regarding the AIRS instrument may be 
acquired from the NASA AIRS website 

(http://www.airs.nasa.jpl.gov). To make the selected 
data more generic to other ultraspectral sounders, 271 
bad channels identified in the supplied AIRS infrared 
channel properties file are excluded, assuming that they 
occur only in the AIRS sounder. Each resulting granule 
is saved as a binary file, arranged as 2107 channels, 
135 scan lines, and 90 cross-track footprints per scan 
line, i.e. there are a total of 135 x 90 = 12,150 footprints 
per channel. Figure 1 shows the AIRS digital counts at 
wavenumber 800.01cm  for the 10 selected granules on 
March 2, 2004. 
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In these granules, coast lines are 
depicted by solid curves, and multiple clouds at various 
altitudes are shown as different shades of colored 
pixels. 
 
 



3. DATA PREPROCESSING SCHEMES 
  
 Ultraspectral sounder data features strong 
correlations in disjoint spectral regions due to the same 
type of absorbing gases. Figure 2 shows an example of 
the dominant absorbing gases in different spectral 
regions. 
Bias Adjusted Reordering: The Bias-Adjusted Re-
ordering (BAR) scheme (Huang et al. 2004b) takes 
advantage of the aforementioned spectroscopic 
characteristic of ultraspectral sounder data. When 
combined with a 3D compression scheme (e.g. 3D 
SPIHT (Tang et al. 2003, Said et al. 1996)), the BAR 
scheme reorders the spectral channels, each of which 
corresponds to a 2D spatial frame. It exploits the 
spectral correlations among disjoint channels resulting 
in compression gains. When the BAR scheme is 
combined with a 2D compression scheme (e.g. 2D 
JPEG2000 (ISO/IEC 2000), 2D JPEG-LS (ISO/IEC 
1999), 2D CALIC (Wu 1997), the 3D sounder data is first 
made two-dimensional by converting the two spatial 
dimensions into one dimension via a continuous scan 
(e.g. horizontal, vertical and diagonal zigzag scans, 
Peano scan (Yang et al. 1988) that smoothens the 
transition of data samples from one line to another. The 
BAR scheme is then applied along the spectral and/or 
spatial dimension. In doing so, it can exploit the spectral 
correlations among disjoint channels, and/or the spatial 
correlations of disjoint geographical regions affected by 
the same type of absorbing gases or clouds.  
 The effects of the BAR scheme can be gauged by 
looking at the reordered 2D data patterns in the 
spectral-spatial domain. Figure 3 shows such an 
example for granule 82. Comparing Fig. 3(a) with Fig. 
3(b), we can see that the data pattern is smoother along 
the spectral dimension after spectral reordering. This 
results in a higher compression ratio for Fig. 3(b). 
Similarly, the spatially reordered data in Fig. 3(c) is 
smoother than the data in Fig. 3(a) along the spatial 
dimension. Fig 3(d) depicts the reordering along both 
dimensions that produces a smoother transition along 
both dimensions. Moreover, the bias adjustment 
reduces the dynamic range of the reordered data as 
visualized by the reduction of colored intensities. 
Following the BAR preprocessing, significant 
compression gains have been reported on 3D SPIHT, 
2D JPEG2000, 2D JPEG-LS and 2D CALIC in (Huang 
et al. 2005b, Huang et al. 2005c). 

Figure 4 shows the sorted indices plotted against 
the original indices in the cases of spectral BAR for four 
granules. The sorted indices are quite different from the 
original indices as judged by their great deviation from 
the straight line. This shows that the natural channel 
ordering by the spectral wavelengths does not possess 
optimal correlation in neighboring channels. In the BAR 
scheme, a given starting channel produces its own 
unique list of reordering indices. Subsequently, the 
compression ratios are different for the BAR scheme 
using different starting channels. An investigation of the 
effects of the starting channel was conducted by Huang 
et al. (2004c). It was shown that any starting channel 

could be used without compromising the compression 
ratio significantly for the ultraspectral sounder data. 
 
Minimum Spanning Tree Reordering: An optimal 
ordering of the channels can also be obtained using the 
Minimum Spanning Tree (MST) (Cormen et al. 2001). 
Previous work (Tate 1997; Toivanen et al. 2005; 
Kubasova et al. 2004) used MST with various cost 
functions to find optimal ordering of bands for prediction. 
For lossless compression of ultraspectral sounder data, 
we explored MST reordering followed by arithmetic 
coding (AC) (Witten et al. 1987) of the prediction 
residuals. Table 2 depicts the compression ratios for the 
standard ultraspectral sounder data set obtained using 
MST reordering with both context-free and context-
based arithmetic coding. For comparison, the 
compression ratios using spectral BAR preprocessing 
are also listed. As seen, MST reordering with context-
free AC produces a higher average compression ratio 
than it’s spectral BAR counterpart. On the other hand, 
BAR is better than MST with context-based AC. 
 
4. COMPRESSION SCHEMES 
 
4.1 Transform-based schemes 
 
3D SPIHT with BAR: SPIHT (Said et al. 1996) is an 
embedded coding algorithm that performs bit-plane 
coding of the wavelet coefficients. It uses spatially 
oriented trees to describe the relationship between the 
parents on higher levels to the children and 
grandchildren on lower levels. It has low complexity and 
provides good performance. Extensions to 3D have 
been proposed in (Tang et al. 2003; Dragotti et al. 
2000). Huang et al. (2003) presented a 3D SPIHT 
version to tackle irregular size 3D data, the dimensions 
of which need not be divisible by 2N, where N is the 
levels of wavelet decomposition being performed. For 
application to ultraspectral sounder data, various 3D 
integer wavelet transforms were used followed by the 
3D SPIHT method and arithmetic coding. The 
compression ratios obtained are shown in Fig. 5. As can 
be seen, different choices of wavelet transforms 
produce different compression ratios. The compression 
gains using the spectral BAR preprocessing are evident 
in Fig. 6. The compression ratios obtained for all ten 
granules are significantly higher with spectral BAR 
followed by 3D SPIHT than using 3D SPIHT alone. 
 
JPEG2000 with BAR: This algorithm is published as a 
new standard of ISO/IEC, as well as an ITU-T 
recommendation (ISO/IEC 2000a). Its rich feature list 
includes progressive transmission by quality, resolution, 
component, or spatial locality, lossy and lossless 
compression, region of interest coding by progression, 
and limited memory implementations, to name a few. 
The JPEG2000 encoder consists of four main stages: 
discrete wavelet transform (DWT), scalar quantization, 
and two tiers of block coding, as depicted in Fig. 7. After 
the DWT stage, embedded scalar quantization is 
performed with the quantization step size possibly 
varying for each subband. The block coder is based on 



the principles of Embedded Block Coding with 
Optimized Truncation (EBCOT) (Taubman 2000) and 
includes an arithmetic coder coupled with a rate-
distortion optimization algorithm to achieve the optimal 
bit rates. The performance of JPEG2000 compression 
with and without the BAR preprocessing scheme 
applied along spectral and/or spatial dimension on the 
ten granules is shown in Fig. 8. As can be seen in the 
figure, BAR significantly improves JPEG2000 
compression gains.  
 
Lossless Multiwavelet Compression with BAR: 
Multiwavelets (MWT) are different from wavelets in that 
they have more than one scaling and wavelet functions. 
Multiwavelets are theoretically expected to perform 
better than traditional wavelets for image compression 
applications (Martin 2001). We create a 2D 
representation of the 3D sounder data and perform 
multiwavelet decomposition. The multiwavelet 
decomposition data is then presented to a context-
based arithmetic coder to achieve lossless 
compression. To achieve lossless compression using 
MWT, a reversible integer-to-integer implementation of 
the MWT is performed. This implementation is obtained 
based on the lifting steps for MWT given by Cheung et 
al. (Cheung 1999), and uses the integer Haar transform 
for both the pre-filter and the transform steps. The 
different subbands are extracted from the multiwavelet 
representation and presented individually to the 
arithmetic coder for lossless compression. The 
arithmetic encoder is able to find more contexts within 
the coefficients of each subband and is able to provide a 
better compression performance. The compression 
results for all the ten granules with and without BAR pre-
processing are shown in Figure 9. It can be seen that on 
an average the use of BAR pre-processing improves the 
compression ratio by about 15%.  
 
3D Wavelet Transform with Reversible Variable-Length 
Coding: Nonreversible variable-length codes (e.g. 
Huffman coding (Huffman 1952), Golomb-Rice coding 
(Golomb 1966; Rice 1979), and arithmetic coding (Said 
2004)) have been conventionally used to increase 
compression efficiency. However, these are very 
vulnerable to error occurrence during noisy transmission 
of compressed bit-streams. A single bit-error is most 
likely to propagate such that many subsequent 
codewords are misinterpreted by the decoder leading to 
substantial degradation of the original data source. 
Reversible variable-length codes (RVLCs) (Takishima et 
al. 1995) offer a solution to this problem by providing 
greater error robustness than their nonreversible 
counterparts. RVLCs can be decoded in both the 
forward and backward direction, allowing ‘recovery’ of 
large parts of the corrupted bit-stream that would have 
been lost in a nonreversible variable length-code. This 
has led to the adoption of RVLCs in the latest video 
coding standards of MPEG-4, H.263+, H.263++ 
(ISO/IEC 1998; ITU-T 1995). Huang et al. (2005d) 
investigated RVLCs for lossless compression of 
ultraspectral sounder data. In their proposed scheme, a 
3D integer wavelet transform (3DWT) is first performed 

on the ultraspectral sounder data. Blocks of wavelet 
coefficients are then grouped together and entropy 
coded using RVLCs. The standard ultraspectral sounder 
data set is compressed using both schemes of 
3DWT+RVLC and JPEG2000 Part 2 (ISO/IEC 2000b). 
Table 3 shows lossless compression ratios for the ten 
tested granules using JPEG2000 Part 2 (3DWT+MQ 
arithmetic coder) and 3DWT+RVLC. The error resilient 
mechanism of JPEG2000 (Taubman et al. 2002) is 
utilized to encode the granules. As seen from Table 3, 
the average compression ratio produced by 
3DWT+RVLC is only 4.2% lower than that of JPEG2000 
Part 2. To investigate the error-resilience capabilities of 
both schemes for an erroneous bit survived from 
channel decoding, a single bit is randomly flipped in 
each compressed granule, and the original and 
decompressed granules are compared to determine the 
number of pixel errors. The propagation of the single bit-
error after source decoding greatly depends on the 
specific 3DWT resolution in which the bit-error occurs. 
Therefore, 30 events of randomly flipping a single bit are 
simulated for each of the 6 spectral and 4 spatial 
resolutions in all compressed granules. The number of 
incorrectly decoded pixels is then determined by 
comparing the original and decompressed granules. 
Figure 10 depicts the average number of pixels errors 
for 30 events in 24 resolutions for ten granules. A bit 
error in a lower resolution generally produces a much 
larger number of pixel errors than those produced in a 
higher resolution. Furthermore, 3DWT+RVLC produces 
significantly fewer number of pixel errors than 
JPEG2000 for all resolutions in the ten granules. 
 
4.2 Prediction-based schemes 
 
CALIC with BAR: The CALIC scheme (Wu 1997) is 
considered as the most efficient and complex encoder 
for compression of 2D continuous-tone images. Among 
the nine proposals in the initial ISO/JPEG evaluation in 
July 1995, CALIC was ranked first. It works on the 
principle of a context-adaptive non-linear predictor 
which adjusts to the local gradients around the current 
pixel. As shown in Fig. 11, the algorithm operates in the 
binary or continuous modes. The binary mode codes 
those regions of the image where the intensity values 
are less than two. In the continuous mode, the system 
has four major components: gradient-adjusted 
prediction, context selection and quantization, context 
modeling of prediction errors, and entropy coding of 
prediction errors. The compression ratios obtained by 
using CALIC with and without different BAR schemes 
are depicted in Fig. 12. A significant improvement in 
compression ratio is seen by using both BAR scheme 
with CALIC.  
 
JPEG-LS with BAR: The ISO/IEC working group 
released a new standard for the lossless/ near-lossless 
compression of continuous-tone images in 1999, 
popularly known as JPEG-LS (ISO/IEC 1999). It has a 
low complexity and is based on the predictive coding 
technique. Near-lossless compression is controlled 
through an integer threshold representing the maximum 



permissible absolute difference between each original 
pixel value and its decompressed value. The JPEG-LS 
encoder is composed of four main stages (Weinberger 
et al. 2000): prediction, context modeling, error 
encoding, and run mode, as depicted in Fig. 13. Figure 
14 shows the compression ratios of JPEG-LS with and 
without the BAR preprocessing scheme applied along 
spectral and/or spatial dimension on the ten granules. It 
is seen that the combination of BAR+JPEG-LS 
significantly outperforms JPEG-LS applied alone.  
 
4.3 Projection-based schemes 
 
Lossless PCA: The Principal Component Analysis 
transform (PCA) or the Karhunen-Loève transform 
(KLT) has long been used in applications pertaining to 
hyperspectral images such as feature extraction, 
dimensionality reduction, and pattern recognition 
(Chang et al. 1999). PCA has also been used for lossy 
compression of hyperspectral imager data (Canta et al. 
1998; Hoffman et al. 1994; Lee et al. 2000). We 
investigated PCA for lossless compression of the 
ultraspectral sounder data. PCA is a linear transform 
that constructs an orthogonal basis on which the data is 
projected. The data is simultaneously decorrelated by 
diagonalization of the data covariance matrix. The 
advantage of using PCA is that it gives the smallest 
average error when approximating a data set by its 
projection on an orthogonal basis (Mallat 1999). To 
ensure lossless compression of the ultraspectral 
sounder data, the error residuals are rounded and 
entropy-coded. The compression ratios of the ten 
granules using lossless PCA with 60 PC’s are shown in 
Table 4.  
 
Optimized Orthogonal Matching Pursuit based Linear 
Prediction: Linear prediction has been successfully used 
for lossless compression of ultraspectral sounder data 
(Huang et al. 2004a, Huang et al. 2005a). To find the 
optimal spectral predictors for each channel, we 
investigated the optimized orthogonal matching pursuit 
(OOMP) algorithm (Rebello-Neira et al. 2002). Matching 
pursuit (MP) represents any signal as a linear 
combination of basis signals, called atoms, chosen from 
an over-complete basis set, called the dictionary, to 
minimize the Euclidean distance between the original 
signal and its approximation (Rebello-Neira et al. 2002; 
Mallat et al. 1993). The OOMP selection criterion for the 
atoms can be implemented using the well-known Gram-
Schmidt technique (Golub et al. 1996). For ultraspectral 
sounder data compression, each spatial frame is 
considered a vector that is predicted by atoms chosen 
using the OOMP algorithm. The selection of atoms for 
each channel proceeds iteratively, with the dictionary for 
each channel consisting of all channels that have been 
previously predicted. After linear prediction, the 
prediction error is entropy coded using an adaptive 
arithmetic coder. Table 5 shows the compression ratios 
achieved by LP using OOMP with 40 predictors for each 
channel. 
 

4.4 Clustering-based schemes 
 
Vector Quantization (VQ) (Gray 1984) has been used for 
hyperspectral imager data compression (Abousleman et 
al. 1997; Motta et al. 2003). To reduce the 
computational burden for ultraspectral sounder data 
compression, Predictive Partitioned VQ (PPVQ) was 
proposed by Huang et al. (2004a). This scheme falls 
under the category of predictive vector quantization 
(Cuperman et al. 1982; Gersho et al. 1992). An open-
loop design methodology is used such that the predictor 
is designed independently of the VQ codebooks. The 
PPVQ scheme consists of four steps: linear prediction, 
channel partitioning, vector quantization, and entropy 
coding. Huang et al. (2005a) also developed a fast 
precomputed vector quantization (FPVQ) scheme with 
optimal bit allocation. Unlike previous bit allocation 
algorithms (Riskin 1991; Cuperman 1993) that may yield 
sub-optimal solutions, the proposed bit allocation 
algorithm guarantees the minimum of the cost function 
under the constraint of a given total bit rate.  

The FPVQ scheme consists of five steps: linear 
prediction, bit-depth partitioning, vector quantization with 
precomputed codebooks, optimal bit allocation, and 
entropy coding. After linear prediction, channels with the 
same bit-depth of prediction error are assigned to the 
same partition for reducing the computational burden. 
To avoid the costly online codebook generation from the 
Linde-Buzo-Gray (LBG) algorithm (Linde et al. 1980), 
precomputed VQ codebooks are applied to each 
partition independently. The linear prediction error of 
each channel is close to a Gaussian distribution with a 
different standard deviation. Thus, only codebooks with 
2m codewords for 2k-dimensional normalized Gaussian 
distributions are precomputed via the LBG algorithm. 
The channels in the i-th partition are thus sub-
partitioned as a linear combination of 2k. The number of 
bits for representing the quantization errors within each 
sub-partition depends on the sub-partition size and its 
codebook size. The minimization problem can be 
formulated as  

         *

1 1

( ) arg min ( )
ij

ij ij ij
b i j

d ibn m
f b L

= =

= ∑∑ b         (1) 

subject to 
 

                                (2) 
1 1

,i j b
i j

d ibn m
b n

= =
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where 

2
1

( )

log( ) ( ) ( ) ij
ij ij ij k ij k ij ij

k ij

p ijn b n
L b n p b p b b

m=

=− +∑   (3) 

is the expected total number of bits for the quantization 
errors in the i-th partition and the j-th sub-partition and 
for the quantization indices; bij is the codebook size in 
bits for the corresponding sub-partition; nd the number of 
partitions; mib the number of sub-partitions in the i-th 
partition; nb the total bits of all the codebooks; nij the 



number of pixels within that sub-partition; np the number 
of distinct values of quantization errors, and pk the 
occurrence probability of the k-th distinct value. Both np 
and pk depend on the codebook size bij. For lossless 
compression, the distortion measure using the total bits 
for the quantization errors and the quantization indices 
appears to be superior to using the squared error 
measure. The new optimal bit assignment algorithm for 
finding the solution to Eq. (1) with the constraint Eq. (2) 
consists of the following steps: 

Step 1) Set . 1, ,ijb i= ∀ j

j
Step 2) Compute the marginal decrement 

. (2) (1), ,ij ij ijL L L iΔ = − ∀
Step 3) Find indices ,α β  for which 

(L b )α β α βΔ  is minimum. 

Step 4) Set . 1b bαβ αβ= +

Step 5) Update . ( ) ( 1L L b L bαβ αβ αβ αβ αβΔ = − − )

Step 6) Repeat Steps 2-5 until
1 1

ij b
i j

d ibn m
b n

= =

=∑∑ . 

Step 7) Compute the next marginal decrement 
* ( 1) ( ), ,ij ij ij ij ijL L b L b i jΔ = + − ∀ . 

Step 8) Find *

( , )
( , ) argmin ( )ij ij

i j
L bκ λ = Δ  and 

( , ) ( , )
( , ) arg max ( )ij ij

i j
L b

κ λ
ν θ

≠
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Step 9) If  ,  set , 

, update  

*L Lκλ νθΔ <Δ 1b bκ λ κ λ= +

1b bνθ νθ= − * ( ) ( 1),L L b L bκλ κλ κλ κλ κλΔ = − −
and go to Step 8; else, STOP.  
 
After the VQ stage, a context-based adaptive 

arithmetic coder (Witten et al. 1987) is used to encode 
the data quantization indices and quantization errors.  
The FPVQ scheme is fast in the sense that the online 
time-consuming codebook generation is avoided by use 
of precomputed codebooks. 

For comparison with PPVQ and FPVQ, we also 
investigate the Differential Partitioned VQ (DPVQ) and 
Partitioned VQ (PVQ) schemes (Huang et al 2005c). In 
the DPVQ scheme, the spectral difference between 
successive neighboring channels is calculated. The rest 
of the steps viz. channel partitioning, vector quantization 
and entropy coding are the same as those used in the 
PPVQ scheme. In the PVQ scheme, channels are 
partitioned according to their original bit-depths, 
followed by vector quantization and entropy coding. 
Table 6 shows the compression ratios achieved by 
these schemes. As seen, PPVQ and FPVQ schemes 
significantly outperform DPVQ and PVQ. 
 
 

5. SUMMARY 
 
 The compression of ultraspectral sounder data is 
preferred to be lossless or near-lossless to avoid 
potential degradation of the geophysical retrieval in the 
associated ill-posed problem. In this paper, a systematic 
study of lossless compression techniques for the next 
generation NOAA GOES-R Hyperspectral 
Environmental Suite is presented. The lossless 
compression results are obtained and compared from, 
a) transform-based b) prediction-based c) projection-
based and d) clustering-based compression 
methods.  Robust data preprocessing schemes (e.g. 
BAR, MST reordering) are also demonstrated to 
improve compression gains of existing state-of-the-art 
compression methods such as JPEG2000, 3D SPIHT, 
JPEG-LS, and CALIC.  
 
Acknowledgement 
 
 This work is sponsored by NOAA under grant 
NA07EC0676, and has been prepared in support of the 
NOAA GOES-R data compression research group led 
by Roger Heymann of NOAA NESDIS Office of Systems 
Development and Tim Schmit of NOAA NESDIS Office 
of Research and Applications. 
 
References 
 
Abousleman G. P., M. W. Marcellin, and B. R. Hunt, 
1997: Hyperspectral image compression using entropy-
constrained predictive trellis coded quantization, IEEE 
Transactions on Image Processing, 6 (4), 566-573. 
 
Aumann H. H., and L. Strow, 2001: AIRS, the first 
ultraspectral infrared sounder for operational weather 
forecasting, Proceedings of IEEE Aerospace 
Conference, 1683-1692. 
 
Bloom H. J., 2001: The Cross-track Infrared Sounder 
(CrIS): a sensor for operational meteorological remote 
sensing, Proceedings of the 2001 International 
Geoscience and Remote Sensing Symposium, 1341-
1343. 
 
Canta G. R., and G. Poggi, 1998: Kronecker-product 
gain-shape vector quantization for multispectral and 
hyperspectral image coding, IEEE Transactions on 
Image Processing, 7 (5), 668-678. 
 
Chang C.-I., and Q. Du, 1999: Interference and noise-
adjusted principal components analysis, IEEE 
Transactions on Geoscience and Remote Sensing, 37 
(5), 2387-2396. 
 
Cheung K., C. Cheung, and L. Po, 1999: 

, Proc. ICIP, 444-447. 

A novel 
multiwavelet-based integer transform for lossless image 
coding
 

http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/xpl/abs_free.jsp%3FarNumber%3D821648
http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/xpl/abs_free.jsp%3FarNumber%3D821648
http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/xpl/abs_free.jsp%3FarNumber%3D821648


Cormen T. H., C. E. Leiserson, R. L. Rivest, and C. 
Stein, 2001: Introduction to Algorithms, 2nd Edition, The 
MIT Press, 1180. 
 
Cuperman V., and A. Gersho, 1982: Adaptive 
differential vector coding of speech, Conference Record 
GlobeCom 82, 1092-1096.  
 
Cuperman V., 1993: Joint bit allocation and dimensions 
optimization for vector transform quantization, IEEE 
Transactions on Information Theory, 39 (1), 302–305. 
 
Dragotti P. L., G. Poggi, A. R. P. Ragozini, 2000: 
Compression of multispectral images by three-
dimensional SPIHT algorithm, IEEE Transactions on 
Geoscience and Remote Sensing, 38 (1), 416-428. 
 
Gersho A., and R.M. Gray, 1992: Vector Quantization 
and Signal Compression. Norwell, Mass: Kluwer 
Academic. 
 
Golomb S. W., 1966: Run-length encodings, IEEE 
Trans. Inf. Theory, IT-12, 399-401. 
 
Golub G. H., and C. F. Van Loan, 1996: Matrix 
Computations, John Hopkins University Press. 
 
Hoffman R. N., and D. W. Johnson, 1994: Application of 
EOF’s to multispectral imagery: data compression and 
noise detection for AVIRIS, IEEE Transactions on 
Geoscience and Remote Sensing, 32 (1), 25-34. 
 
Huang, B., W. L. Smith, H.-L. Huang, and H. M. Woolf, 
2002: Comparison of linear forms of the radiative 
transfer equation with analytic Jacobians, Applied 
Optics, 41 (21), 4209-4219. 
 
Huang B., H.-L. Huang, H. Chen, A. Ahuja, K. Baggett, 
T. J. Schmit, and R. W. Heymann, 2003: Data 
compression studies for NOAA hyperspectral 
environmental suite using 3D integer wavelet transforms 
with 3D set partitioning in hierarchical trees, SPIE Int. 
Symp. Remote Sensing Europe, Proc. of SPIE, 5238, 
255-265. 
 
Huang B., A. Ahuja, H.-L. Huang, T. J. Schmit, and R. 
W. Heymann, 2004a: Predictive partitioned vector 
quantization for hyperspectral sounder data 
compression, SPIE Annual Meeting 2004, Proc. of 
SPIE, 5548, 70-77. 
 
Huang B., A. Ahuja, H.-L. Huang, T. J. Schmit, and R. 
W. Heymann, 2004b: Lossless compression of 3D 
hyperspectral sounding data using context-based 
adaptive lossless image codec with Bias-Adjusted 
Reordering. Optical Engineering, 43 (9), 2071-2079. 
 
Huang B., A. Ahuja, H.-L. Huang, T. J. Schmit, and R. 
W. Heymann, 2004c: Effects of the starting channel for 
spectral reordering on the lossless compression of 
ultraspectral sounder data, SPIE International Asia-
Pacific Symposium, 8-11 November, Honolulu, Hawaii. 

Huang B., A. Ahuja, H.-L. Huang, T. J. Schmit, and R. 
W. Heymann, 2005a: Fast precomputed VQ with 
optimal bit allocation for lossless compression of 
ultraspectral sounder data, Proceedings of the 2005 
IEEE Data Compression Conference, 408-417. 
 
Huang B., A. Ahuja, H.-L. Huang, T. J. Schmit, and R. 
W. Heymann, 2005b: Current Status of ultraspectral 
sounder data compression, SPIE Annual Meeting, San 
Diego, 31 July – 4 August 2005, Proc. SPIE, 5889, 35-
48. 
 
Huang B., A. Ahuja, H.-L. Huang, 2005c: Lossless 
Compression of Ultraspectral Sounder Data, 
Hyperspectral Data Compression, edited by G. Motta 
and J. Storer, Springer-Verlag. 
 
Huang B., A. Ahuja, H.-L. Huang, T. J. Schmit, and R. 
W. Heymann, 2005d: Ultraspectral sounder data 
compression using error-detecting reversible variable-
length codes, SPIE Annual Meeting, San Diego, 31 July 
– 4 August 2005, Proc. SPIE, 5889, 167-176. 
 
Huffman D. A., 1952: A method for construction of 
minimum redundancy codes, Proceedings of IRE, 40, 
1098-1101. 
 
ISO/IEC 14496-2, 1998: Final draft international 
standard: Information technology – Coding of audio-
visual objects: Visual. 
 
ISO/IEC 14495-1 and ITU Recommendation T.87, 1999: 
Information Technology – lossless and near-lossless 
compression of continuous-tone still images.  
 
ISO/IEC 15444-1, 2000a: Information technology - 
JPEG2000 image coding system-part 1: Core coding 
system.  
 
ISO/IEC 15444-2, 2000b: Information technology - 
JPEG2000 image coding system: Extensions.  
 
ITU-T Recommendation H.263, 1995: Video coding for 
low bit rate communication. 
 
Lee H. S., N.-H. Younan, and R. L. King, 2000: 
Hyperspectral image cube compression combining 
JPEG 2000 and spectral decorrelation, Proceedings of 
the IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS), 6, 3317-3319. 
 
Kubasova O., P. Toivanen, J. Mielikainen, 2004: 
Lossless Compression of 3D Hyperspectral Sounding 
Data Via Statistical Image Characteristics, WSEAS 
Transactions on Systems, 3 (6), 2368-2373. 
 
Linde Y., A. Buzo, and R.M. Gray, 1980: An Algorithm 
for Vector Quantizer Design, IEEE Trans. Commun., 
COM-28, 84-95. 
 



Mallat S. G., and Z. Zhang, 1993: Matching pursuits with 
time-frequency dictionaries, IEEE Transactions on 
Signal Processing, 41 (12), 3397-3415. 
 
Mallat S., 1999: A wavelet tour of signal processing. 
Elsevier Academic Press. 
 
Martin M. B., and A. E. Bell, 2001. New image 
compression techniques using multiwavelets and 
multiwavelet packets, IEEE Transactions on Image 
Processing, 10, 500–510. 
 
Motta G., F. Rizzo, and J. A. Storer, 2003: Compression 
of hyperspectral imagery, Proceedings of the 2003 IEEE 
Data Compression Conference, 333-342.  
 
Phulpin T., F. Cayla, G. Chalon, D. Diebel, and D. 
Schlüssel, 2002: IASI onboard Metop: Project status 
and scientific preparation,12th Int. TOVS Study Conf., 
Lorne, Victoria, Australia, 234-243. 
 
Rebello-Neira L., and D. Lowe, 2002: Optimized 
orthogonal matching pursuit approach, IEEE Signal 
Processing Letters, 9 (4), 137-140. 
 
Rice R. F., 1979: Some practical universal noiseless 
coding techniques, Tech Rep. JPL-79-22, Jet 
Propulsion Laboratory, Pasadena, CA. 
 
Riskin E. A., 1991: Optimal bit allocation via the 
generalized BFOS algorithm, IEEE Transactions on 
Information Theory, 37 (2), 400-402. 
 
Said A., and W. A. Pearlman, 1996: A new, fast, and 
efficient image codec based on set partitioning in 
hierarchical trees, IEEE Transactions on Circuits and 
Systems for Video Technology, 6 (3), 243-250. 
 
Said A., 2004: Introduction to Arithmetic coding theory 
and practice, Hewlett-Packard Laboratories Report, 
HPL-2004-76. 
 
Smith W. L., F. W. Harrison, D. E. Hinton, H. E. 
Revercomb, G. E. Bingham, R. Petersen, and J. C. 
Dodge, 2002: GIFTS - the precursor geostationary 
satellite component of the future earth observing 
system, Proceedings of the 2002 International 
Geoscience and Remote Sensing Symposium, 357-361. 
 
Takishima Y., M. Wada, and H. Murakami, 1995: 
Reversible variable length codes, IEEE Transactions on 
Communications, 43, 158-162. 
 
Tang X., S. Cho, and W.A. Pearlman, 2003: 
Comparison of 3D set partitioning methods in 
hyperspectral image compression featuring an improved 
3D-SPIHT, Proceedings of the 2003 IEEE Data 
Compression Conference, 449. 
 
Tate S. R., 1997: Band ordering in lossless compression 
of multispectral images, IEEE Transactions on 
Computers, 46 (4), 477-483. 

Taubman D., 2000: High performance scalable image 
compression with EBCOT, IEEE Transactions on Image 
Processing, 9, 1158-1170. 
 
Taubman D., and M. Marcellin, 2002: JPEG2000: Image 
Compression Fundamentals, Standards and Practice. 
Kluwer Academic, Norwell. 
 
Toivanen P., O. Kubasova, and J. Mielikainen, 2005: 
Correlation-based band-ordering heuristic for lossless 
compression of hyperspectral sounder data, IEEE 
Geoscience and Remote Sensing Letters, 1 (1), 1-5. 
 
Weinberger M. J., G. Seroussi, and G. Sapiro, 2000: 
The LOCO-I lossless image compression algorithm: 
principles and standardization into JPEG-LS, IEEE 
Transactions on Image Processing, 9 (8), 1309-1324. 
 
Witten I. H., R. M. Neal, and J. C. Cleary, 1987: 
Arithmetic Coding for Data Compression, Comm. ACM, 
30 (6), 520-541. 
 
Wu X., 1997: Lossless compression of continuous-tone 
images via context selection, quantization, and 
modeling, IEEE Transactions on Image Processing, 6 
(5), 656–664. 
 
Yang K. M., L. Wu, and M. Mills, 1988: Fractal based 
image coding scheme using peano scan, Proceedings 
of the 1988 International Symposium on Circuits and 
Systems, 3, 2301-2304. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 
 

Granule   9 00:53:31 UTC   -12 H  (Pacific Ocean, Daytime)  

Granule  16 01:35:31 UTC    +2 H  (Europe, Nighttime)       

Granule  60 05:59:31 UTC    +7 H  (Asia, Daytime)           

Granule  82 08:11:31 UTC     -5 H  (North America, Nighttime) 

Granule 120 11:59:31 UTC   -10 H  (Antarctica, Nighttime)    

Granule 126 12:35:31 UTC     -0 H  (Africa, Daytime)         

Granule 129 12:53:31 UTC     -2 H  (Arctic, Daytime)         

Granule 151 15:05:31 UTC  +11 H  (Australia, Nighttime)    

Granule 182 18:11:31 UTC    +8 H  (Asia, Nighttime)         

Granule 193 19:17:31 UTC     -7 H  (North America, Daytime)  
 
 

Table 1. Ten selected AIRS granules for ultraspectral sounder data compression studies. 



 

 

     

                

         

   
Figure 1. AIRS digital counts at wavenumber 800.01cm-1 for the 10 selected granules on March 2, 2004. 



 
 

Figure 2. Dominant absorption gases in the infrared spectrum.  
 
 

  
 
Figure 3. Example of 2D data distribution (a) of the original granule (b) after applying spectral BAR (b) after applying spatial 
BAR (d) after applying spectral BAR followed by spatial BAR. 
 
 
 



 

 
 

Figure 4. Spectral BAR sorting indices for various AIRS digital counts granules. 
 
 
 
 

Granule 9 16 60 82 120 126 129 151 182 193 Average
MST+Context-free AC 2.57 2.73 2.42 2.75 2.58 2.44 2.73 2.34 2.35 2.49 2.54
BAR+Context-free AC 2.44 2.58 2.30 2.60 2.44 2.32 2.59 2.22 2.24 2.36 2.41

MST+Context-based AC 2.76 2.76 2.62 2.68 2.68 2.64 2.75 2.63 2.58 2.64 2.67
BAR+Context-based AC 2.68 2.80 2.66 2.81 2.61 2.63 2.83 2.64 2.60 2.64 2.69  

 
Table 2. Compression ratios using MST reordering and BAR followed by arithmetic coding for 10 tested granules. 
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Figure 5. Compression ratios of ten granules using 3D SPIHT with various wavelet transforms. 
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Figure 6. Compression ratios of ten granules using spectral BAR and 3D SPIHT with various wavelet transforms. 

 
 



 

 
 

Figure 7. JPEG2000 encoder functional block diagram. 
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Figure 8. Compression ratios for JPEG2000 with and without BAR for ten tested granules.  
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Figure 9. Compression ratios for multiwavelet (MWT) compression with and without BAR prepreocessing. 



Granules JPEG2000 Part 2 3DWT+RVLC
9 2.63 2.53
16 2.71 2.60
60 2.51 2.40
82 2.80 2.67
120 2.62 2.52
126 2.51 2.40
129 2.82 2.70
151 2.55 2.46
182 2.52 2.41
193 2.51 2.39

Average 2.62 2.51  
 

Table 3. Compression ratios of JPEG2000 Part 2 and 3DWT+RVLC for ten tested granules. 
 

 
 

 

 



 
 



 

 
 
 

Figure 10. Average number of pixel errors for 30 events of single bit-error corruption in 24 resolutions of all the ten tested 
granules. 



 

 
 

Figure 11. Schematic description of CALIC’s encoder. 
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Figure 12. Compression ratios for CALIC with and without BAR for ten tested granules.  
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Figure 13. JPEG-LS encoder  block diagram. 
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Figure 14. Compression ratios for JPEG-LS with and without BAR for ten tested granules.  
 
 

Granule 9 16 60 82 120 126 129 151 182 193 Average
PCA 3.19 3.19 3.18 3.20 3.16 3.17 3.22 3.14 3.10 3.16 3.17

 
 

Table 4. Compression ratios using Lossless PCA with 60 eigenvectors for ten tested granules. 
 
 

Granule 9 16 60 82 120 126 129 151 182 193 Average
OOMP-LP 3.21 3.30 2.78 3.11 3.26 2.81 2.81 2.79 2.74 3.33 3.01  

 
Table 5. Compression ratios for OOMP-LP for ten tested granules. 

 
 

Granule PVQ DPVQ PPVQ FPVQ
9 2.23 2.85 3.35 3.35
16 2.25 2.88 3.36 3.36
60 2.01 2.75 3.30 3.30
82 2.37 2.94 3.39 3.38
120 2.13 2.80 3.31 3.31
126 2.07 2.76 3.29 3.29
129 2.38 2.91 3.38 3.38
151 2.03 2.73 3.26 3.26
182 1.96 2.64 3.22 3.22
193 2.04 2.73 3.27 3.28

Average 2.15 2.80 3.31 3.31  
 

Table 6. Compression ratios for partitioned VQ, DPVQ, and PPVQ on ten tested granules. 


