
 TURBULENCE REMOTE SENSING OPERATIONAL DEMONSTRATION SYSTEM

Jaimi Yee*, John K. Williams, Gary Blackburn, Steven G. Carson and Jason A. Craig
National Center for Atmospheric Research, Boulder, Colorado

1. INTRODUCTION

In the spring and summer of 2005, under direction

and funding from the Federal Aviation Administration
(FAA), an operational demonstration was created to test
the NCAR Turbulence Detection Algorithm in a real-time
setting. This task involved collecting and processing
NEXRAD Level II data from sixteen radar sites and
integrating that data into a final mosaic product. In
addition, turbulence messages were uplinked via ARINC
to ACARS printers in selected United Airlines aircraft
cockpits. To this end, several new applications were
developed and installed in a distributed system
consisting of four servers. Operations were maintained
on a continual basis, so software tools had to be in
place to maintain process control and data flow. In
addition, system monitoring tools were employed to
make sure any problems were found quickly.

2. ALGORITHMS

The Turbulence Remote Sensing Operational

Demonstration system is defined by the algorithms it
uses. Indeed the purpose of implementing such a
system was to demonstrate the capabilities of the NCAR
Turbulence Detection Algorithm (NTDA). This is a fuzzy
logic algorithm that uses radar reflectivity, radial velocity
and spectrum width to perform data quality control and
compute estimates of eddy dissipation rate (EDR) and
associated confidences (Williams, 2004). See Figure 1
for a depiction of this algorithm. Note that the NTDA
uses an elevation of NEXRAD Level II data. This means
that the Level II data must be retrieved and
preprocessed before being used in the NTDA.

Another process, called nexrad2netcdf, reads

NEXRAD Level II data written to disk via Unidata’s Local
Data Manager (LDM), performs various preprocessing
steps on the data and writes it out to disk in netCDF
format. It must buffer the data into elevations and
compute signal to noise ratio (SNR) and power ratio
(PR) data fields. (The power ratio is defined as the ratio
of the signal power at each gate to the total overlaid
echo power, and is used for data quality control.)

Both nexrad2netcdf and the NTDA operate on one
radar elevation at a time and produce data on a polar
grid. A 3-D mosaic is created by combining the output of
the NTDA from several radars into a single Cartesian
grid. The process responsible for

* Corresponding author address: Jaimi Yee, National
Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307; email: jaimi@ucar.edu.

this is called confWgtdMosaic, since it produces a
confidence weighted mosaic using the confidence
values from the NTDA. This process is triggered by the
clock every 5 minutes and reads in all the NTDA data
from sixteen radars that was produced in the previous
10 minutes, using only the most recent elevation tilts
from each radar. (Note that the time periods and the
number of radars are configurable parameters. The
values listed above are the current settings for those
parameters.)

Figure 1: Diagram of the NTDA, as implemented for the
WSR-88D (NEXRAD) radar. The Level II reflectivity,
radial velocity and spectrum width data are used to
censor bad data and compute EDR and an associated
confidence for each radar measurement point via a
fuzzy-logic framework

Aircraft route and position information are ingested
via the Aircraft Situation Display to Industry (ASDI) data
stream by a process called asdi2spdb. (SPDB stands
for symbolic product database and is an internal data
format at NCAR’s Research Applications Laboratory.)
The asdi2spdb application was developed for another
project, but it was significantly modified to read and
process aircraft route information for this project. It
reads the ASDI data stream on a continual basis. Once
the turbulence mosaic product is produced, another
process called DrawUplink uses the route and position
information along with the mosaic to produce text
messages depicting turbulence over a 80 nm wide by
114 nm region ahead of selected aircraft. (See Figure 2)
These messages are then parsed by a process called
asciiParse to separate out the text messages that will
actually be uplinked via ARINC to ACARS printers in
specified United Airlines aircraft cockpits. A website was
created to allow pilots to review the series of uplinked

DZ

reflectivity

VE
radial

velocity

SW

spectrum
width

Polar grid EDR
and confidence

Turbulence
(EDR)

Confidence
computations

EDR
confidence

VE confidence

SW confidence

WSR-88D
Level-II Data

Intermediate
quantities

SNR
signal-to-noise ratio

PR

overlaid power ratio

REC
Radar Echo
Classifier

SWT
Spectrum width

texture

Censored SW

Censored VE

P1.2

messages and provide feedback via a questionnaire
and comment form.

Figure 2: Sample text-based turbulence map generated
for a flight from Washington Dulles to San Diego on 20
October 2005. The initial aircraft location is indicated by
the X near the bottom, asterisks denote the filed route,
and waypoints are indicated by a “+” along the route and
labeled in the left margin, which also shows distance in
nm along the expected path. Turbulence intensities are
denoted by “o” (smooth), “l” (light), “M” (moderate) and
“S” (severe).

These processes make up the core of the

Turbulence Remote Sensing Operational Demonstration
system. Maintaining these processes and the
associated inter-process communication is the driving
force for the rest of the system design. Figure 3 gives a
simplified version of the operational system in order to
demonstrate how the processes work together.

Note that the display is not considered part of the
core of the system. This is because the display is a Java
application that the user downloads to his or her own
host. It runs there and communicates via the internet to
retrieve data from the operational demonstration

system. See Figure 4 for an example of this display and
see http://www.rap.ucar.edu/projects/jade for
documentation of this software.

Figure 3: Simplified depiction of algorithm/data flow in
operational demonstration system

Figure 4: Interactive Java display for disseminating the
NTDA operational demonstration data, shown for 0:40
UTC on 27 July 2005. Overlaid are in situ turbulence
values reported by United Airlines B-757 aircraft.

LDM

nexrad2netcdf nexrad2netcdf

NTDA NTDA

confWgtdMosaic

JVIS
Display

asciiParse

ASDI ingest

Archive

DrawUplink

EXP TURB FI UAL•••••••••••••••
-- 20 Oct 2005 22:43:59Z
FL 360 orient. 270 deg
'X'=aircraft, '+'=waypoint, '*'=route
' '=no_data, 'o'=smooth, 'l'=light
'M'=mod, 'S'=severe
--------------(33nm to BAYLI)----------
 ll ll * o
112nm ll *
 llll **
108nm lMMlllll *
 lMMMlll *
104nm MMMMl l *
 MMMMl l lo *
100nm MMMMM lll * l
 lMMMMl lll l*lllllll
096nm llMlll ll l*lllllll
 ll ll ll l*lllll oo
092nm lllll l l*lllll
 lllll ll ll*lllll
088nm llll ll l*llllll
 ll l*llllllllll l
084nm lll l*llllllllllllll
+CAP ll l+lllllll llllll
080nm l*llllll llllll
 *llll llllll
076nm * ll ll lll
 * lll
072nm M * llll
 M ll llll* lll
068nm Mllll llll*ll
 Mllll lll*ll MM lll
064nm llllll lll*lll MMMllllll
 lllllll ll*lll MMlllllll
060nm lllllll l*llll lllll
 lllllll l*llll lllll l
056nm MMllllll M*Mll
 MMllllll M*Mll l
052nm Mlllllll M*lll ll
 l lllllo * l
048nm l oooo *
 l ool l*l l ll
044nm oo l*llllllllll
 l*lllllloll
040nm *llllll
 * l
036nm ll *
 llll *
032nm llll *
 l lll *
028nm llllll * ool
 llloll * ll o
024nm oool * ll
 l *
020nm oooo l *
 ooool *
016nm ooooll *
 oolll *
012nm ollll*
 ll *
008nm *
 *
004nm *
 *
valid ----------------X-*--------------
2240Z -40nm (39.9N, 87.7W) +40nm

3. SYSTEM ARCHITECTURE

As mentioned above, nexrad2netcdf and the NTDA
are designed to work on a single elevation of radar data
at a time. Since this system uses sixteen radars, it is
necessary to run sixteen instances of each of these
processes. In addition two mosaic products are
produced. One product is the eddy dissipation rate
(EDR) data and its associated confidence on a
Cartesian grid having horizontal spacing of
approximately two km and vertical levels of multiples of
3,000 ft. The other product consists of the Cartesianized
reflectivity field. Thus there are also two instances of the
mosaic as well as many other processes that run in this
system. It is for this reason the operational
demonstration is a distributed system.

Role Host
Control delphi1
Ingest1 delphi1
Ingest2 delphi2
Ingest3 delphi3
Ingest4 delphi4
EDR Mosaic delphi3
Reflectivity Mosaic delphi4
Uplink delphi3
Archive delphi2

Table 1: List of roles in the operational demonstration
system with their associated servers

The current system is made up of four 3.4GHz dual

Xeon processor servers running Debian Linux. Each
server or host takes on one or more “roles”. For
example, the uplink host is responsible for maintaining
the processes associated with the turbulence uplink
product. (See Table 1) Thus processes with like goals
are grouped on a given host. But it also means that
processes can be moved to a new host with relative
ease.

The role definitions are defined in a central file.

When a host starts up, it determines what its roles are
and then concatenates lists of processes and crontabs,
etc. to start and maintain the given processes and any
support processes.

The architecture is a centrally controlled one,

however. One host is defined as the control host. When
the system startup command is evoked on this host, it
starts itself and tells the other hosts to start themselves.
Likewise, it shuts itself down and sends word to the
other hosts to shutdown as well when the system
shutdown command is evoked.

4. DATA ARCHITECTURE

The data hierarchy is defined in a similar way on all
the hosts in the system. All the data resides under a
single directory on a single disk. If the data does not all
fit on one disk, links may be set from the location of the
data into the main data directory. Each dataset should
be grouped under a data directory that identifies its
format and type. For example, the NTDA writes out
netCDF files, so the data for a given instance are found
in a path named in the following way:

netcdf/ntda/<radar name>/<date>

Other data in the system are stored similarly.

5. PROCESS CONTROL

All of the above mentioned processes are designed

to be running all the time. They either wait until data
arrives, or, as the case of the mosaic, begin processing
according to the clock time. This has several
advantages. First, it means that applications do not
waste time doing startup initialization tasks every time
they process data. It also means that it is very easy to
tell if there is a problem with a given process. If it is not
running, there is some kind of error. In addition, it can
make inter-process communication simpler, since the
processes that must communicate are always in
existence.

However, this type of architecture requires that
there is a mechanism for restarting processes that die
for various reasons. Fortunately, the Turbulence
Remote Sensing Operational Demonstration was able to
leverage work that has already been done in NCAR’s
Research Applications Laboratory (RAL). Years of trial
and error and redesign has led to some very stable and
useful tools for process control.

The process control scheme begins with an
application called procmap, or the process mapper. All
the processes in the system that are to be restarted
when they die or are hung must register with the
process mapper on a regular basis (at least once a
minute). (See Figure 5) When they exit, they must
unregister with procmap.

Figure 5: Listing of processes that are registered with
the process mapper. Note the heartbeat column. This

gives the time in seconds since the last registration of
that process with procmap.

A list of processes that are to be maintained in this

way is created and stored on disk. This list contains the
process name, instance name, start script and kill script
for each process. The start script must first check to see
if the given process, with the given instance, is running.
If it is already running, it does not start the process. This
is a preventative measure to avoid starting too many
instances of a given process.

An application called auto_restart, reads the
process list and determines how long it has been since
a given process, with the given instance name, in that
list has registered with procmap. If the time between
registrations has been too long or if the process has
unregistered, the process is killed with the kill script and
restarted with the start script.

Now it is possible that procmap or auto_restart
could die, so these processes are maintained via cron.
Other processes in the system that do not need to be
running all the time, such as data archival scripts, can
also be added to the cron.

6. DATA FLOW

One of the key parts of system like this is the inter-

process communication or the data flow. The
Turbulence Remote Sensing Operational Demonstration
system makes use of latest data information files. The
files of this type that are used by this system are
actually message queues. When an application writes
out a data file, it writes a message to the queue.
Downstream processes that make use of that data
watch the appropriate queue. When a new message is
written, those processes watching the queue “wake up”
and grab the data file that matches the file name and
time written to the message queue.

The version of nexrad2netcdf that ran operationally
this summer did not make use of the latest data
information queue to read data files from the LDM.
Instead it polled the input directories looking for a new
file. It made use of the fact that the LDM files for a given
volume are named with the start time of the volume and
a sequence number. The end of the volume is marked
by a file with an E instead of the sequence number. This
allowed nexrad2netcdf to look for the next file in the
sequence and wait until it appeared. However, after
running this operationally, it was apparent that this was
not the most efficient way to find the next file. Therefore,
the LDM was setup to write messages to latest data
information queues using an application called
LdataWriter in preparation for the next version of
nexrad2netcdf. This new version will make use of the
latest data information queues.

When it writes a file, nexrad2netcdf, writes a

message to the latest data information message queue.
This allows the NTDA to determine when to read in the

appropriate netCDF file. The NTDA also writes a
message to the queue on output.

As was mentioned before, there are sixteen
instances of nexrad2netcdf and the NTDA running as
part of this system. There are four servers in the
operational demonstration system, so there are 4
instances of each of these applications running on each
server. The two instances of the mosaic are running on
separate servers in the system. Each instance of the
mosaic requires output from all sixteen instances of the
NTDA. Thus any NTDA data that does not reside on the
server where the mosaic is running must be pushed
there from the other servers. This is accomplished by
using an application called DsFileDist. This process
uses the latest data information messages to determine
when to copy a given file to another server. It also keeps
the latest data information message queue up to date
on the remote server.

The mosaic algorithm then makes use of the latest
data information message queues for all sixteen radars
by finding the time of the latest file in each case. It then
reads in all the data for the previous ten minutes from
each radar, using the most recent data from each
elevation tilt to create the mosaic.

As mentioned above, the DrawUplink application
uses the EDR mosaic data as well as the ASDI data
processed by asdi2spdb. DrawUplink uses the latest
data information queue to trigger data processing. It
then reads in the mosaic data and contacts a process
called DsSpdbServer to retrieve data from the data
bases created by asdi2spdb (aircraft position
information and aircraft route information). DrawUplink
creates data in two formats: netCDF and ASCII. There
are two instances of the process called asciiParse
running in this system. In both cases, they wait until they
detect that a new file has appeared in the appropriate
data directory to read the ASCII formatted output from
DrawUplink. The first instance creates text files that are
then pushed using DsFileDist to another server outside
of the operational demonstration. These messages are
then sent via ARINC to the ACARS printer in the
appropriate United Airlines cockpit. The second instance
of DrawUplink creates files that can then be used in a
web display.

The mosaic data is also used in the web based

display. The data is retrieved by the display through a
process called DsMdvServer, which processes requests
from a client and sends the appropriate data back.

The above mentioned processes such as

DsSpdbServer and DsMdvServer are part of a general
suite of client/server based applications developed in
RAL for data service. Any of these processes can be
started by themselves, but they can also be controlled
by another process called DsServerMgr, or the server
manager. This process waits until a request for a
specific type of data is made. It then starts the
appropriate data server. It also kills data servers that
have been inactive for a lengthy period of time.

DsFileDist works in cooperation with another server
application called DsFCopyServer. This server runs on
the receiving host and is also maintained by the server
manager.

Figure 6: Listing of datasets that are registered with the
data mapper. Note that this is not the full listing. There
are other fields available, such as start time, end time
and number of files. However, the primary file format for
this system is netCDF, which is not a supported data
format for those fields.

Just as the process mapper keeps track of which
processes are running, the data mapper keeps track of
which data sets are up to date. Data sets that have
associated latest data information queues are usually
registered with the data mapper. This means that each
time a data file is written and the message queue is
updated, the data mapper is notified. (See Figure 6)
Thus it is possible to see when there is a delay in the
arrival of a data file. Data sets that do not have
associated latest data information queues can still be
updated in the data mapper via an application called the
Scout. This process looks through the data tree to see
when data files have been written to the various
directories and reports that information to the data
mapper.

7. DATA MANAGEMENT

One of the issues with a system like the Turbulence
Remote Sensing Operational Demonstration is the vast
amount of data that is produced. This requires some
specific data management to ensure that appropriate
data is saved, while also making sure that the disks do
not fill.

The operational demonstration system made use of
a two TB Apple Xserve RAID that was connected to one
of the servers to archive well chosen data sets. This
was done by creating several simple scripts, which were
run daily, to copy data to that RAID. Not all the datasets
were archived, but those key to later validation efforts
were maintained. As this was the first year of
operations, considerable trial and error took place to

determine which datasets could feasibly be archived
and how to maintain the datasets in such a way that
they did not take up too much room.

The other goal of data management is to ensure
that the data disks do not fill. To that end, the
operational demonstration system made use of an
existing process called Janitor. This process traverses
the data directory tree and first zips older files and then
deletes them at the appropriate file age. (All of those
ages are configurable.) In the Operational
Demonstration System, five days of data were
maintained on disk, and hence available to users of the
Java display.

8. SYSTEM MONITORING

For a distributed system as complicated as this
one, system monitoring tools are a great advantage.
They allow the developers to see problems at a glance
and to locate and solve those problems quickly. System
monitoring for the operational demonstration consists of
three parts. First, there are the reliability statistics.
These give an indication of the average reliability and
health of the system over a span of a day. Second,
there is a current system view. This gives a snapshot of
the current condition of the processes in the system.
Third there is hardware status monitoring, which gives
warnings when the hardware is not behaving as
expected.

8.1 Reliability Statistics

Every time the auto-restarter kills and restarts a
process, that information is saved in a log file. The auto-
restart reliability statistics parse those log files and
create statistics over a period of a day. This data is
displayed on an internal web page, which allows the
developers to see a summary of which processes
restarted, how many times and why the process was
restarted, i.e. whether the process was hung or missing.

Statistics are also produced for file distribution.

These statistics indicate how many errors occurred
during data pushes. The web page again allows the
user to “drill down” to see a summary of the error
messages generated by DsFileDist.

The other part to the reliability statistics internal
web page is a count of error messages in the system.
Each process in the system writes error messages to a
separate log file in the data tree. These log files are
parsed to determine how many error messages
appeared for each process. A total count appears on the
web page, but again the user can view a summary
which includes the name of the process producing the
error messages and the number of error messages
included in the count for that process.

Scripts to compute these statistics, developed
previously in RAL, are run nightly as part of cron. Note
that creating a web page for this requires that statistics
from all four hosts reside on a single host. This means

that summary statistics must be pushed to this central
host via DsFileDist.

8.2 System View

A current view of the system is very helpful when
determining whether it is working correctly. The
operational demonstration system makes use of another
RAL tool called SysView, which is a graphical depiction
of the key processes and datasets in the system.

The system developer creates a diagram of the
system configuration using SysView. This diagram
allows the developer to specify the process names and
instances, specify the datasets and the amount of time
allowed before each dataset is considered late and draw
flow lines indicating the data flow. When SysView runs it
communicates with the process mapper and the data
mapper to determine if processes are currently running
and if datasets are current. It then assigns the
appropriate color to the given process or dataset to
indicate its status. (See Figure 7) SysView also dumps
images on a regular basis that can be displayed on a
web page.

8.3 Hardware Status

Many operational systems make use of spong. This
is a shareware system for monitoring servers for things
like disk usage, CPU usage, NFS, etc. It sends email to
the specified user when disk usage or the load on the
machine exceeds some limit, or when NFS is down, etc.
Obviously this is a significant tool for setting up and
monitoring a distributed system. See Figure 8 for an
example.

9. PROJECT REVISION CONTROL

One key aspect of a complicated system such as
this is to ensure that the current system setup is
protected and to keep a clear record of the changes that
were made to the various parts of the system over time.
Concurrent Versions System or CVS has been an
excellent tool to this end. All source code used in this
system is checked into CVS. The project setup itself is
also maintained since the start/kill scripts, system level
scripts, archive scripts, parameter files for each of the
applications, process lists used by the auto-restarter,
crontabs and documentation are checked into CVS.

Using this revision control system for the source

code has the added benefit of making it straightforward
to do a complete build of all of the software used in the
system on a regular basis. Of course, prior to becoming
operational, the code should be frozen and no additional
builds should be done. But up until this point, the
Turbulence Remote Sensing Operational Demonstration
system made use of build scripts to systematically
upgrade all of the software in the system.

Figure 7: Sample SysView diagrams from the
operational demonstration system. The top diagram
depicts the processes and datasets for one of the ingest
roles. The center diagram depicts processes and
datasets for the EDR mosaic and the bottom shows the
uplink processes and datasets. The red color indicates
that the datasets are late, which, in this case is a result
of problems at the given radar.

Figure 8: Example of spong display

10. CONCLUSION

In the summer of 2005, an operational
demonstration of the newly-developed NCAR
Turbulence Detection Algorithm (NTDA) was performed
by NCAR’s Research Applications Laboratory (RAL)
under direction and funding from the FAA’s Aviation
Weather Research Program. The system designed for
this operational demonstration consisted of a distributed
system using four servers. Several central algorithms
were developed, including an ingester (nexrad2netcdf),
the NCAR Turbulence Detection Algorithm (NTDA), a
mosaic algorithm (confWgtdMosaic) and hazard uplink
message generation algorithms. In addition, existing
code for reading and interpreting ASDI data was
significantly modified to process aircraft route
information. Existing tools were employed to keep this
system operational throughout the summer and to
ensure that the data was flowing through the system
properly. Several methods of monitoring the system
were used to ensure the health of the system and CVS
was used to ensure this system setup was saved for
current and future uses.

11. ACKNOWLEDGEMENTS

Many of the tools used in this system were
developed by the hard work and experience of many
software engineers in Research Applications Laboratory
(RAL) at NCAR, including Michael Dixon, Deirdre
Garvey, Niles Oien, Nancy Rehak, Rebecca Ruttenburg,
and many others. Their work has produced very reliable
systems and has made design and installation a more
productive and straightforward endeavor. In addition,
the Oceanic Weather project at NCAR did much of the
early work in uplinking messages to ACARS printers in
selected cockpits via ARINC. That work was most
helpful in this project.

The JADE software used by this demonstration for

the display was developed by a team of software
engineers in RAL at NCAR. Their very competent work
has been essential to the success of this project. In
particular, Paddy McCarthy, Aaron Braeckel and Shelly
Knight should be noted for their work on the display for
this project.

This work is in response to requirements and

funding by the Federal Aviation Administration (FAA).
The views expressed are those of the authors and do
not necessarily represent the official policy or position of
the FAA.

12. REFERENCE

Williams, J. K., L. Cornman, D. Gilbert, S. G. Carson,

and J. Yee, 2004: Improved remote detection of
turbulence using ground-based Doppler radars.
AMS 11th Conference on Aviation, Range, and
Aerospace Meteorology, CD-ROM, 4.5.

