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1. INTRODUCTION 

 
In the spring and summer of 2005, under direction 

and funding from the Federal Aviation Administration 
(FAA), an operational demonstration was created to test 
the NCAR Turbulence Detection Algorithm in a real-time 
setting. This task involved collecting and processing 
NEXRAD Level II data from sixteen radar sites and 
integrating that data into a final mosaic product. In 
addition, turbulence messages were uplinked via ARINC 
to ACARS printers in selected United Airlines aircraft 
cockpits. To this end, several new applications were 
developed and installed in a distributed system 
consisting of four servers. Operations were maintained 
on a continual basis, so software tools had to be in 
place to maintain process control and data flow. In 
addition, system monitoring tools were employed to 
make sure any problems were found quickly. 

 
2.  ALGORITHMS 

 
The Turbulence Remote Sensing Operational 

Demonstration system is defined by the algorithms it 
uses. Indeed the purpose of implementing such a 
system was to demonstrate the capabilities of the NCAR 
Turbulence Detection Algorithm (NTDA). This is a fuzzy 
logic algorithm that uses radar reflectivity, radial velocity 
and spectrum width to perform data quality control and 
compute estimates of eddy dissipation rate (EDR) and 
associated confidences (Williams, 2004). See Figure 1 
for a depiction of this algorithm. Note that the NTDA 
uses an elevation of NEXRAD Level II data. This means 
that the Level II data must be retrieved and 
preprocessed before being used in the NTDA. 

 
Another process, called nexrad2netcdf, reads 

NEXRAD Level II data written to disk via Unidata’s Local 
Data Manager (LDM), performs various preprocessing 
steps on the data and writes it out to disk in netCDF 
format. It must buffer the data into elevations and 
compute signal to noise ratio (SNR) and power ratio 
(PR) data fields. (The power ratio is defined as the ratio 
of the signal power at each gate to the total overlaid 
echo power, and is used for data quality control.) 
 

Both nexrad2netcdf and the NTDA operate on one 
radar elevation at a time and produce data on a polar 
grid. A 3-D mosaic is created by combining the output of 
the NTDA from several radars into a single Cartesian 
grid. The process responsible for  
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this is called confWgtdMosaic, since it produces a 
confidence weighted mosaic using the confidence 
values from the NTDA. This process is triggered by the 
clock every 5 minutes and reads in all the NTDA data 
from sixteen radars that was produced in the previous 
10 minutes, using only the most recent elevation tilts 
from each radar. (Note that the time periods and the 
number of radars are configurable parameters. The 
values listed above are the current settings for those 
parameters.) 
 

 
Figure 1: Diagram of the NTDA, as implemented for the 
WSR-88D (NEXRAD) radar.  The Level II reflectivity, 
radial velocity and spectrum width data are used to 
censor bad data and compute EDR and an associated 
confidence for each radar measurement point via a 
fuzzy-logic framework 
 

Aircraft route and position information are ingested 
via the Aircraft Situation Display to Industry (ASDI) data 
stream by a process called asdi2spdb. (SPDB stands 
for symbolic product database and is an internal data 
format at NCAR’s Research Applications Laboratory.) 
The asdi2spdb application was developed for another 
project, but it was significantly modified to read and 
process aircraft route information for this project. It 
reads the ASDI data stream on a continual basis. Once 
the turbulence mosaic product is produced, another 
process called DrawUplink uses the route and position 
information along with the mosaic to produce text 
messages depicting turbulence over a 80 nm wide  by 
114 nm region ahead of selected aircraft. (See Figure 2) 
These messages are then parsed by a process called 
asciiParse to separate out the text messages that will 
actually be uplinked via ARINC to ACARS printers in 
specified United Airlines aircraft cockpits. A website was 
created to allow pilots to review the series of uplinked 
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messages and provide feedback via a questionnaire 
and comment form.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Sample text-based turbulence map generated 
for a flight from Washington Dulles to San Diego on 20 
October 2005.  The initial aircraft location is indicated by 
the X near the bottom, asterisks denote the filed route, 
and waypoints are indicated by a “+” along the route and 
labeled in the left margin, which also shows distance in 
nm along the expected path.  Turbulence intensities are 
denoted by “o” (smooth), “l” (light), “M” (moderate) and 
“S” (severe). 

 
These processes make up the core of the 

Turbulence Remote Sensing Operational Demonstration 
system. Maintaining these processes and the 
associated inter-process communication is the driving 
force for the rest of the system design. Figure 3 gives a 
simplified version of the operational system in order to 
demonstrate how the processes work together.  
 

Note that the display is not considered part of the 
core of the system. This is because the display is a Java 
application that the user downloads to his or her own 
host. It runs there and communicates via the internet to 
retrieve data from the operational demonstration 

system. See Figure 4 for an example of this display and 
see http://www.rap.ucar.edu/projects/jade for 
documentation of this software. 

 
 

 
Figure 3: Simplified depiction of algorithm/data flow in 
operational demonstration system 

 

 
Figure 4: Interactive Java display for disseminating the 
NTDA operational demonstration data, shown for 0:40 
UTC on 27 July 2005. Overlaid are in situ turbulence 
values reported by United Airlines B-757 aircraft. 
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3. SYSTEM ARCHITECTURE 
 

As mentioned above, nexrad2netcdf and the NTDA 
are designed to work on a single elevation of radar data 
at a time. Since this system uses sixteen radars, it is 
necessary to run sixteen instances of each of these 
processes. In addition two mosaic products are 
produced. One product is the eddy dissipation rate 
(EDR) data and its associated confidence on a 
Cartesian grid having horizontal spacing of 
approximately two km and vertical levels of multiples of 
3,000 ft. The other product consists of the Cartesianized 
reflectivity field. Thus there are also two instances of the 
mosaic as well as many other processes that run in this 
system. It is for this reason the operational 
demonstration is a distributed system. 

 
Role Host 
Control delphi1 
Ingest1 delphi1 
Ingest2 delphi2 
Ingest3 delphi3 
Ingest4 delphi4 
EDR Mosaic delphi3 
Reflectivity Mosaic delphi4 
Uplink delphi3 
Archive delphi2 

 

Table 1: List of roles in the operational demonstration 
system with their associated servers 

 
The current system is made up of four 3.4GHz dual 

Xeon processor servers running Debian Linux. Each 
server or host takes on one or more “roles”. For 
example, the uplink host is responsible for maintaining 
the processes associated with the turbulence uplink 
product. (See Table 1) Thus processes with like goals 
are grouped on a given host. But it also means that 
processes can be moved to a new host with relative 
ease. 

 
The role definitions are defined in a central file. 

When a host starts up, it determines what its roles are 
and then concatenates lists of processes and crontabs, 
etc. to start and maintain the given processes and any 
support processes. 

 
The architecture is a centrally controlled one, 

however. One host is defined as the control host. When 
the system startup command is evoked on this host, it 
starts itself and tells the other hosts to start themselves. 
Likewise, it shuts itself down and sends word to the 
other hosts to shutdown as well when the system 
shutdown command is evoked. 

 
4.  DATA ARCHITECTURE 
 

The data hierarchy is defined in a similar way on all 
the hosts in the system. All the data resides under a 
single directory on a single disk. If the data does not all 
fit on one disk, links may be set from the location of the 
data into the main data directory. Each dataset should 
be grouped under a data directory that identifies its 
format and type. For example, the NTDA writes out 
netCDF files, so the data for a given instance are found 
in a path named in the following way:  

 
netcdf/ntda/<radar name>/<date> 
 

Other data in the system are stored similarly. 
 
5. PROCESS CONTROL 

 
All of the above mentioned processes are designed 

to be running all the time. They either wait until data 
arrives, or, as the case of the mosaic, begin processing 
according to the clock time. This has several 
advantages. First, it means that applications do not 
waste time doing startup initialization tasks every time 
they process data. It also means that it is very easy to 
tell if there is a problem with a given process. If it is not 
running, there is some kind of error. In addition, it can 
make inter-process communication simpler, since the 
processes that must communicate are always in 
existence. 
 

However, this type of architecture requires that 
there is a mechanism for restarting processes that die 
for various reasons. Fortunately, the Turbulence 
Remote Sensing Operational Demonstration was able to 
leverage work that has already been done in NCAR’s 
Research Applications Laboratory (RAL). Years of trial 
and error and redesign has led to some very stable and 
useful tools for process control. 
 

The process control scheme begins with an 
application called procmap, or the process mapper. All 
the processes in the system that are to be restarted 
when they die or are hung must register with the 
process mapper on a regular basis (at least once a 
minute). (See Figure 5) When they exit, they must 
unregister with procmap.  

 

 
Figure 5: Listing of processes that are registered with 
the process mapper. Note the heartbeat column. This 



gives the time in seconds since the last registration of 
that process with procmap. 

 
A list of processes that are to be maintained in this 

way is created and stored on disk. This list contains the 
process name, instance name, start script and kill script 
for each process. The start script must first check to see 
if the given process, with the given instance, is running. 
If it is already running, it does not start the process. This 
is a preventative measure to avoid starting too many 
instances of a given process.  
 

An application called auto_restart, reads the 
process list and determines how long it has been since 
a given process, with the given instance name, in that 
list has registered with procmap. If the time between 
registrations has been too long or if the process has 
unregistered, the process is killed with the kill script and 
restarted with the start script. 
 

Now it is possible that procmap or auto_restart 
could die, so these processes are maintained via cron. 
Other processes in the system that do not need to be 
running all the time, such as data archival scripts, can 
also be added to the cron. 
 
6. DATA FLOW 

 
One of the key parts of system like this is the inter-

process communication or the data flow. The 
Turbulence Remote Sensing Operational Demonstration 
system makes use of latest data information files. The 
files of this type that are used by this system are 
actually message queues. When an application writes 
out a data file, it writes a message to the queue. 
Downstream processes that make use of that data 
watch the appropriate queue. When a new message is 
written, those processes watching the queue “wake up” 
and grab the data file that matches the file name and 
time written to the message queue.  
 

The version of nexrad2netcdf that ran operationally 
this summer did not make use of the latest data 
information queue to read data files from the LDM.  
Instead it polled the input directories looking for a new 
file. It made use of the fact that the LDM files for a given 
volume are named with the start time of the volume and 
a sequence number. The end of the volume is marked 
by a file with an E instead of the sequence number. This 
allowed nexrad2netcdf to look for the next file in the 
sequence and wait until it appeared. However, after 
running this operationally, it was apparent that this was 
not the most efficient way to find the next file. Therefore, 
the LDM was setup to write messages to latest data 
information queues using an application called 
LdataWriter in preparation for the next version of 
nexrad2netcdf. This new version will make use of the 
latest data information queues. 

 
When it writes a file, nexrad2netcdf, writes a 

message to the latest data information message queue. 
This allows the NTDA to determine when to read in the 

appropriate netCDF file. The NTDA also writes a 
message to the queue on output. 
 

As was mentioned before, there are sixteen 
instances of nexrad2netcdf and the NTDA running as 
part of this system. There are four servers in the 
operational demonstration system, so there are 4 
instances of each of these applications running on each 
server. The two instances of the mosaic are running on 
separate servers in the system. Each instance of the 
mosaic requires output from all sixteen instances of the 
NTDA. Thus any NTDA data that does not reside on the 
server where the mosaic is running must be pushed 
there from the other servers. This is accomplished by 
using an application called DsFileDist. This process 
uses the latest data information messages to determine 
when to copy a given file to another server. It also keeps 
the latest data information message queue up to date 
on the remote server. 
 

The mosaic algorithm then makes use of the latest 
data information message queues for all sixteen radars 
by finding the time of the latest file in each case. It then 
reads in all the data for the previous ten minutes from 
each radar, using the most recent data from each 
elevation tilt to create the mosaic. 
 

As mentioned above, the DrawUplink application 
uses the EDR mosaic data as well as the ASDI data 
processed by asdi2spdb. DrawUplink uses the latest 
data information queue to trigger data processing. It 
then reads in the mosaic data and contacts a process 
called DsSpdbServer to retrieve data from the data 
bases created by asdi2spdb (aircraft position 
information and aircraft route information). DrawUplink 
creates data in two formats: netCDF and ASCII. There 
are two instances of the process called asciiParse 
running in this system. In both cases, they wait until they 
detect that a new file has appeared in the appropriate 
data directory to read the ASCII formatted output from 
DrawUplink. The first instance creates text files that are 
then pushed using DsFileDist to another server outside 
of the operational demonstration. These messages are 
then sent via ARINC to the ACARS printer in the 
appropriate United Airlines cockpit. The second instance 
of DrawUplink creates files that can then be used in a 
web display. 

 
The mosaic data is also used in the web based 

display. The data is retrieved by the display through a 
process called DsMdvServer, which processes requests 
from a client and sends the appropriate data back.  

 
The above mentioned processes such as 

DsSpdbServer and DsMdvServer are part of a general 
suite of client/server based applications developed in 
RAL for data service. Any of these processes can be 
started by themselves, but they can also be controlled 
by another process called DsServerMgr, or the server 
manager. This process waits until a request for a 
specific type of data is made. It then starts the 
appropriate data server. It also kills data servers that 
have been inactive for a lengthy period of time. 



DsFileDist works in cooperation with another server 
application called DsFCopyServer. This server runs on 
the receiving host and is also maintained by the server 
manager. 

 
 

 
Figure 6: Listing of datasets that are registered with the 
data mapper. Note that this is not the full listing. There 
are other fields available, such as start time, end time 
and number of files. However, the primary file format for 
this system is netCDF, which is not a supported data 
format for those fields. 
 
 

Just as the process mapper keeps track of which 
processes are running, the data mapper keeps track of 
which data sets are up to date. Data sets that have 
associated latest data information queues are usually 
registered with the data mapper. This means that each 
time a data file is written and the message queue is 
updated, the data mapper is notified. (See Figure 6) 
Thus it is possible to see when there is a delay in the 
arrival of a data file. Data sets that do not have 
associated latest data information queues can still be 
updated in the data mapper via an application called the 
Scout. This process looks through the data tree to see 
when data files have been written to the various 
directories and reports that information to the data 
mapper.  
 
7.   DATA MANAGEMENT 
 

One of the issues with a system like the Turbulence 
Remote Sensing Operational Demonstration is the vast 
amount of data that is produced. This requires some 
specific data management to ensure that appropriate 
data is saved, while also making sure that the disks do 
not fill.  
 

The operational demonstration system made use of 
a two TB Apple Xserve RAID that was connected to one 
of the servers to archive well chosen data sets. This 
was done by creating several simple scripts, which were 
run daily, to copy data to that RAID. Not all the datasets 
were archived, but those key to later validation efforts 
were maintained. As this was the first year of 
operations, considerable trial and error took place to 

determine which datasets could feasibly be archived 
and how to maintain the datasets in such a way that 
they did not take up too much room.  
 

The other goal of data management is to ensure 
that the data disks do not fill. To that end, the 
operational demonstration system made use of an 
existing process called Janitor. This process traverses 
the data directory tree and first zips older files and then 
deletes them at the appropriate file age. (All of those 
ages are configurable.) In the Operational 
Demonstration System, five days of data were 
maintained on disk, and hence available to users of the 
Java display. 
 
8. SYSTEM MONITORING 
 

For a distributed system as complicated as this 
one, system monitoring tools are a great advantage. 
They allow the developers to see problems at a glance 
and to locate and solve those problems quickly. System 
monitoring for the operational demonstration consists of 
three parts. First, there are the reliability statistics. 
These give an indication of the average reliability and 
health of the system over a span of a day. Second, 
there is a current system view. This gives a snapshot of 
the current condition of the processes in the system. 
Third there is hardware status monitoring, which gives 
warnings when the hardware is not behaving as 
expected. 
 
8.1  Reliability Statistics 
 

Every time the auto-restarter kills and restarts a 
process, that information is saved in a log file. The auto-
restart reliability statistics parse those log files and 
create statistics over a period of a day. This data is 
displayed on an internal web page, which allows the 
developers to see a summary of which processes 
restarted, how many times and why the process was 
restarted, i.e. whether the process was hung or missing.  

 
Statistics are also produced for file distribution. 

These statistics indicate how many errors occurred 
during data pushes. The web page again allows the 
user to “drill down” to see a summary of the error 
messages generated by DsFileDist. 
 

The other part to the reliability statistics internal 
web page is a count of error messages in the system. 
Each process in the system writes error messages to a 
separate log file in the data tree. These log files are 
parsed to determine how many error messages 
appeared for each process. A total count appears on the 
web page, but again the user can view a summary 
which includes the name of the process producing the 
error messages and the number of error messages 
included in the count for that process. 
 

Scripts to compute these statistics, developed 
previously in RAL, are run nightly as part of cron. Note 
that creating a web page for this requires that statistics 
from all four hosts reside on a single host. This means 



that summary statistics must be pushed to this central 
host via DsFileDist. 
 
8.2 System View 
 

A current view of the system is very helpful when 
determining whether it is working correctly. The 
operational demonstration system makes use of another 
RAL tool called SysView, which is a graphical depiction 
of the key processes and datasets in the system.  
 

The system developer creates a diagram of the 
system configuration using SysView. This diagram 
allows the developer to specify the process names and 
instances, specify the datasets and the amount of time 
allowed before each dataset is considered late and draw 
flow lines indicating the data flow. When SysView runs it 
communicates with the process mapper and the data 
mapper to determine if processes are currently running 
and if datasets are current. It then assigns the 
appropriate color to the given process or dataset to 
indicate its status. (See Figure 7) SysView also dumps 
images on a regular basis that can be displayed on a 
web page. 
 
8.3  Hardware Status 
 

Many operational systems make use of spong. This 
is a shareware system for monitoring servers for things 
like disk usage, CPU usage, NFS, etc. It sends email to 
the specified user when disk usage or the load on the 
machine exceeds some limit, or when NFS is down, etc. 
Obviously this is a significant tool for setting up and 
monitoring a distributed system. See Figure 8 for an 
example. 

 
9. PROJECT REVISION CONTROL 
 

One key aspect of a complicated system such as 
this is to ensure that the current system setup is 
protected and to keep a clear record of the changes that 
were made to the various parts of the system over time. 
Concurrent Versions System or CVS has been an 
excellent tool to this end. All source code used in this 
system is checked into CVS. The project setup itself is 
also maintained since the start/kill scripts, system level 
scripts, archive scripts, parameter files for each of the 
applications, process lists used by the auto-restarter, 
crontabs and documentation are checked into CVS.  

 
Using this revision control system for the source 

code has the added benefit of making it straightforward 
to do a complete build of all of the software used in the 
system on a regular basis. Of course, prior to becoming 
operational, the code should be frozen and no additional 
builds should be done. But up until this point, the 
Turbulence Remote Sensing Operational Demonstration 
system made use of build scripts to systematically 
upgrade all of the software in the system.  
 

 
 

 
 

 
Figure 7: Sample SysView diagrams from the 
operational demonstration system. The top diagram 
depicts the processes and datasets for one of the ingest 
roles. The center diagram depicts processes and 
datasets for the EDR mosaic and the bottom shows the 
uplink processes and datasets. The red color indicates 
that the datasets are late, which, in this case is a result 
of problems at the given radar. 



 
Figure 8: Example of spong display 

 
 
10. CONCLUSION 
 

In the summer of 2005, an operational 
demonstration of the newly-developed NCAR 
Turbulence Detection Algorithm (NTDA) was performed 
by NCAR’s Research Applications Laboratory (RAL) 
under direction and funding from the FAA’s Aviation 
Weather Research Program. The system designed for 
this operational demonstration consisted of a distributed 
system using four servers. Several central algorithms 
were developed, including an ingester (nexrad2netcdf), 
the NCAR Turbulence Detection Algorithm (NTDA), a 
mosaic algorithm (confWgtdMosaic) and hazard uplink 
message generation algorithms. In addition, existing 
code for reading and interpreting ASDI data was 
significantly modified to process aircraft route 
information. Existing tools were employed to keep this 
system operational throughout the summer and to 
ensure that the data was flowing through the system 
properly. Several methods of monitoring the system 
were used to ensure the health of the system and CVS 
was used to ensure this system setup was saved for 
current and future uses. 
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