
*Corresponding Author Address:
Doug Lindholm,Unidata,PO Box 3000, Boulder, CO 80307
lind@unidata.ucar.edu

10.10
AN ARCHITECTURE FOR THE LEAD DATA REPOSITORY

Doug Lindholm*, Anne Wilson, Tom Baltzer

Unidata Program Center / UCAR

1. INTRODUCTION

The Linked Environments for Atmospheric
discovery (LEAD) is a multi-institutional
Information Technology Research effort funded
by the National Science Foundation (NSF). The
goal of LEAD is to create a Grid and Web Service
based framework to support mesoscale
meteorology research and education.

LEAD presents unique challenges integrating
large data volumes from real-time observational
systems as well as those that are dynamically
created during the execution of adaptive
workflows. The LEAD Data Repository (LDR),
which manages these data, must be able to
autonomously handle storage and retrieval
requests generated by the LEAD orchestration in
addition to directly satisfying user requests.

During the design process, the responsibilities of
the LDR were broken down into separable
concerns and constructed using loosely coupled
implementations of abstract interfaces. The result
is a flexible framework that supports the needs of
various scientific data communities.

2. DATA REPOSITORY COMPONENTS

A data repository, much like a file system, has a
number of responsibilities to fulfill. It must enable
a user or an application to store and retrieve data
responsively and reliably. There must be a data
discovery mechanism such as browsing or query
support. The data repository must also manage
metadata for the data products and coordinate a
number of other technical capabilities to support
these requirements.

Another key feature that must not be overlooked
is ease of use. LEAD users and others in the
Unidata community have a wide variety of needs
and expectations. The data repository framework
must be flexible to support a variety of use cases
from students in a classroom to developers of
sophisticated scientific workflows.

 It is helpful to factor out an abstraction of the
data repository responsibilities to support such
flexibility. By defining modular functional
components, various loosely coupled
implementations can be plugged in to support the
needs of the target community.

2.1 Storage Locator

Some part of the data repository subsystem must
be responsible for managing the physical storage
resources for the data. The role of the Storage
Locator is to provide the data repository with a
physical URL to a location for storing the data.
This could simply be a preconfigured scratch
directory or a more complex capability that
considers user authorization, optimizations, and
desired access protocols.

2.2 Data Mover

Once a location has been identified, the Data
Mover has the sole responsibility of moving the
data from its source location to its destination.
This could be a simple file copy or it could involve
a complex subsetting or aggregation of the data.
It is useful to think beyond a simple file based
abstraction.

2.3 Metadata Generator

To support data discovery and use, there must
be metadata associated with the data. If
metadata is not available by other means, an
automated capability can be used to harvest
metadata from the data products. The Metadata
Generator is responsible for gathering the
minimum set of information about the data to
support the discovery and use requirements of
the data repository.

2.4 Metadata Crosswalk

To promote a loose coupling of components, the
data repository design should not require a
consistent metadata language across all
modules. A Metadata Crosswalk can be provided
to translate from one metadata schema to
another to ease the barriers of interoperability.

2.5 Cataloger

The Cataloger is responsible for maintaining the
metadata for the data repository’s data holdings.
The Cataloger should provide a user interface for
browsing or querying the contents of the
repository and in turn provide access information
to the user or application.

2.6 Unique ID Generator

It is useful to name data products with a unique
identifier as opposed to a physical URL. This
supports the notion of replicas and data access
transparency. The Unique ID Generator is
responsible for creating an identifier that is
unique within the scope of the data repository.

2.7 Name Resolver

The Name Resolver is responsible for providing a
mapping between the Unique ID and a physical
URL.

3. THREDDS DATA REPOSITORY
FRAMEWORK

To support the varied needs of the LEAD and
Unidata communities, we have designed the
THREDDS Data Repository (TDR) framework
that encapsulates the modular components of a
data repository behind a simple interface or
façade. The TDR defines an interface for each
component described above and provides simple
high level interfaces (such as putData and
getData) which in turn delegate to the component
interfaces to perform the desired task. As a result
of the separation of concerns inherent in the
design, various implementations of these
components can be plugged into a TDR
instantiation.

The goal is to provide an easily usable interface
to a data repository subsystem. As a result, some
compromises have been made to keep the higher
level TDR interface simple. The interfaces are
designed to support roughly 80% of the use
cases – the most common ones. However, the
TDR does expose the underlying native
implementations of the functional components so
there is a hook to access the other 20% by more
sophisticated users.

We are currently developing functional
component implementations and TDR
configurations to support three unique use cases.
Although the requirements of each system vary
significantly, this framework promotes a great
deal of code reuse.

3.1 Local THREDDS Data Repository (TDR-lite)

TDR-lite packages implementations of the data
repository functional components that support
storing data in a local space such that the data
can later be accessed on that system with no
networking requirements. One such scenario
would be an instructor who wants to package up
a learning module, including data, on a laptop to
be presented in a classroom setting without
network connectivity.

TDR-lite provides the user with a lightweight
desktop client application that enables data
discovery (e.g. from an existing THREDDS Data
Server) and provides the option to store the data
to a personal TDR workspace. The client then
invokes a local Java implementation of the TDS
that orchestrates the other configured
components. In this configuration, the Storage
Locator simply returns a URL to a pre-configured
directory and the Data Mover does a simple http
download to this location. The Metadata
Generator will ensure that metadata is available
to be cataloged by the Cataloger. For this
scenario it is sufficient to store the physical URL
in the metadata so a unique ID and Name
Resolver is not needed. Because this
implementation is local to a single user, concerns
of security and scalability are greatly reduced.

The user can then access the data via a
hierarchy of logically named data products (much
like a file system) in the TDR THREDDS catalog
using THREDDS enabled clients such as the
Integrated Data Viewer.

3.2 THREDDS Data Repository Service (TDR-
classic)

The Classic implementation of the TDR is as a
web service that supports remote data ingest and
access for multiple users. One such scenario
would involve a researcher putting together a
case study to share with the community. In this
scenario, security and scalability become a
greater concern and the functional component
implementations must be suitable to meet those
needs.

The TDR service can be invoked by a user via a
web interface or programmatically by another
application. The required functionality is much
like that of the TDR-lite but the implementations
must be able to deal with authentication,
authorization, and handling multiple users. The
data can in turn be accessed by others via a
THREDDS Data Server.

3.3 LEAD Data Repository (LDR)

The LEAD system provides some much bigger
challenges of scalability. Not only will the TDR be
offered as a service, but the individual functional
components can also be implemented as
distributed services. The Storage Locator will
make use of sophisticated resource monitoring.
The Data Mover will be implemented using
NCSA’s trebuchet software which supports
gridftp and other data transport mechanisms.
Metadata can be harvested from data products
via the NetCDF Common Data Model. A
Crosswalk will translated the generated metadata
from the THREDDS schema to the LEAD

schema. The Cataloger will then send the
metadata to the myLEAD catalog developed at
Indiana University. LEAD needs to be able to
support replicas so unique IDs and name
resolution are a must. The Replica Locator
Service (RLS) is being considered as an
implementation of the TDR Name Resolver
interface. LEAD’s grid security measures will be
applied throughout this implementation.

CONCLUSION

We have described here an architecture for the
THREDDS Data Repository (TDR) -- a data
repository framework suitable to meet the needs
of a wide variety of communities. The most
ambitious needs of the LEAD project are driving
the development. The TDR is designed as a
collection of highly configurable, loosely coupled
modules that enable plugging in alternate
implementations to support the needs of other
communities. Through the use of open source
software, code reuse, and an extensible
framework we hope the TDR can grow to support
additional communities.

REFERENCES

THREDDS Data Repository (TDR)
http://www.unidata.ucar.edu/projects/LEAD/Thred
dsDataRepository.html

THREDDS
http://www.unidata.ucar.edu/projects/THREDDS/

Common Data Model (CDM)
http://www.unidata.ucar.edu/software/netcdf/CD
M/

Integrated Data Viewer (IDV)
http://www.unidata.ucar.edu/software/idv

LEAD
http://lead.ou.edu/

Unidata
http://www.unidata.ucar.edu

http://www.unidata.ucar.edu/projects/LEAD/ThreddsDataRepository.html
http://www.unidata.ucar.edu/projects/LEAD/ThreddsDataRepository.html
http://www.unidata.ucar.edu/projects/THREDDS/
http://www.unidata.ucar.edu/software/netcdf/CDM/
http://www.unidata.ucar.edu/software/netcdf/CDM/
http://www.unidata.ucar.edu/software/idv
http://lead.ou.edu/
http://www.unidata.ucar.edu/

