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1. INTRODUCTION 
 
 Data assimilation methods are 
commonly used to address problems involving 
dynamical models and observations in different 
scientific disciplines (e.g., atmospheric, oceanic, 
hydrological, and carbon cycle sciences). 
Sharing the knowledge and experience from 
different disciplines is, therefore, of fundamental 
importance for further improvements of data 
assimilation methods. 
 In this study we address applications of 
ensemble-based data assimilation methods in 
two different areas: atmospheric science and 
carbon cycle science. One of the most 
significant differences between these two 
applications is in the ways the forecast error 
covariance (i.e., prior error information) is used. 
This difference arises from different dynamical 
models used to propagate forecast error 
covariance from one data assimilation cycle to 
another.  
 For example, in atmospheric 
applications, dynamical forecast models are 
quite complex (e.g., non-hydrostatic numerical 
prediction models), often involving chaotic 
forecast error growth. This property of the 
atmospheric dynamical models is used in 
Kalman filter methods, and also in novel 
ensemble-based data assimilation approaches: 
the complex dynamical models help develop 
complex, dynamically dependent, and often 
growing forecast error structures.  
 In contrast to the atmospheric 
applications, the dynamical models used in 
carbon flux inversion problems are often 
reduced to persistence (i.e., identity operators). 
This is done for reducing the computational cost 
of the more complex carbon flux inversion 

problems. For example, more complex 
dynamical models (e.g., atmospheric + particle 
transport models) are commonly employed only 
during the preparation phase: to pre-calculate 
the so-called Green’s functions (also referred to 
as base-functions, or influence functions), which 
are then used in data assimilation as 
observation operators (e.g., Peters et al. 2005). 
Thus, complex dynamical models for the CO2 
fluxes are excluded from the data assimilation 
process. As pointed out in Peters et al. (2005), 
this could severely limit the potential for 
developing realistic flow-dependent forecast 
error covariance structures during data 
assimilation.  
 Identity operators are also used in 
atmospheric data assimilation problems when 
dynamical forecast models are not available or 
not known. For example, identity operators are 
often used to describe time evolution of model 
errors (e.g., Zupanski and Zupanski 2005, and 
references therein).  
 In this paper we address the issues 
related to using identity operators as dynamical 
models in both atmospheric and carbon science 
applications. In particular, we address the 
problem of dynamically localized impact of the 
observations. 
 
2. DYNAMIC LOCALIZATION 
 
 One of the major data assimilation 
issues related to identity operators is how to 
define localized, yet dynamically consistent, 
impact of observations, since a dynamical model 
for defining flow-dependent forecast error 
covariances is not existent (i.e., it is equal to an 
identity operator).  
 To address this problem we define a 
“dynamic localization” based on the ratio σ0/σ, 
where σ0 is the background (or prior) error 
standard deviation, and σ is the analysis (or 
posterior) error standard deviation. We have 
performed initial evaluations of this localization 
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approach in applications to the problems of 
carbon flux inversion, employing an ensemble-
based data assimilation technique. The 
experimental results are presented in the next 
subsection. 
 
3. EXPERIMENTAL DESIGN AND RESULTS 
 
 The experimental results presented here 
are obtained employing an ensemble-based 
data assimilation approach entitled Maximum 
Likelihood Ensemble Filter (MLEF, Zupanski 
2005; Zupanski and Zupanski 2006). Regional 
Atmospheric Modeling System coupled with 
Simple Biosphere model (SiB-RAMS) is used to 
define atmospheric variables and surface and 
inflow CO2 fluxes. Lagrangian Particle 
Dispersion Model (LPDM) is used to pre-
calculate influence functions for the CO2 fluxes. 
These influence functions are then employed as 
observation operators in the MLEF. Simulated 
observations of CO2 concentrations from the 
WLEF TV tall tower in Northern Wisconsin are 
used in the experiments. We estimate biases 
αR(x,y) and αA(x,y), defined as space 
dependent, but constant in time, multiplicative 
corrections to the CO2 respiration and 
assimilation fluxes, respectively. 
 In Fig. 1, the ratio σ0/σ is shown for the 
bias αR for a mesoscale domain (600km x 
600km) centered over the toll tower. Results for 
three consecutive 5-day data assimilation cycles 
are shown in Fig. 1a-c. In each data assimilation 
cycle, 600 observations (120 per day) are 
assimilated. Ensemble size of 40 ensemble 
members is used in all experiments. As the 
figure indicates, the background error reduction 
is greatest (i.e., the ratio σ0/σ has the largest 
value) where simulated observations are 
available (in the vicinity of the tall tower), and it 
decreases away from the observations. The 
isolines in Fig. 1 also indicate changing patterns 
from one data assimilation cycle to another. 
These changing patterns reflect the actual 
dynamics of the SiB-RAMS CO2 fluxes, which 
are used here only as pre-calculated values. 
The ratio σ0/σ for the other bias component (αA), 
even though it has a different pattern, also 
indicates dynamically localized impact of the 
observations (figure not shown).  
 The estimates for the biases αR and αA 
and their corresponding posterior uncertainties 
σR and σA, obtained employing the MLEF with 
the dynamic localization explained above, are 
shown in Figs. 2 and 3. Figs. 2 and 3 indicate 

that both biases approach the true value (equal 
to 1.0 non-dimensional units) at the tower 
location, and the background value (equal to 0.5 
non-dimensional units) away from the tower. 
Also, the posterior uncertainties are smallest at 
the tower location, and increase away from the 
tower. This an indication that the dynamic 
localization has a positive impact on the bias 
estimates as well as on their posterior 
uncertainty estimates. 

 

Fig. 1. The ratio σ0/σ, calculated for the bias αR. Results 
from data assimilation cycles 1-3 are shown in (a)-(c), 
respectively. 

(a) 

(b) 

(c) 
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Fig.2. Estimates for the bias αR (shaded) and its posterior 
uncertainty σR (contours) obtained employing the MLEF. 
Results are shown for first three data assimilation cycles in 
(a)-(c), respectively. The estimates and the uncertainties are 
passed from one data assimilation cycle to another. True 
αR=1.0, prior uncertainty σ0=0.5. Note that the uncertainty is 
smallest in the center of the domain (location of the tower). 
 

 

 
 
Fig.3. As in Fig.2, but for the bias α A. Note that in both Figs. 
2 and 3 the area of minimum uncertainty increases with time: 
the system is learning about the truth. 
 
4. DISCUSSION 

 
The results presented in the previous 

sub-section are encouraging, indicating that is 
possible to define dynamically localized impact 
of observations even in the cases when a 
dynamical model for time propagation of the 
forecast error covariance is not available. This is 
especially encouraging for the problems of 
model bias estimation, shared across different 
sciences.  

These results should be taken with 
caution, however, since more testing of the 
proposed dynamic localization approach is 
necessary in order to be able to conclude how 
general this approach is. We are currently 
evaluating this approach in applications to 
carbon inversion problems employing multiple 
tall towers, and also in data assimilation and 
bias estimation problems in atmospheric 
science. These experimental results will be 
reported in near future. 
 
 
 

(a) 

(b) 

(c) 

(b) 

(c) 

(a) 



 4 

Acknowledgements 
 
We would like to thank Peter Rayner from CEA/LSCE for 
helpful discussions regarding the localization in the carbon 
inversion problems. This research was supported by NASA 
Grant NNG05GD15G.  
 
References 
 
Peters, W., J.B. Miller, J. Whitaker, A.S. Denning, A. Hirsch, 
M.C. Krol, D. Zupanski, L. Bruhwiler, and P.P. Tans, 2005: 
An ensemble data assimilation system to estimate CO2 
surface fluxes from atmospheric trace gas observations. J. 
Geophys. Res. (in press). 
  
Zupanski, D., and M. Zupanski, 2006: Model error estimation 
employing ensemble data assimilation approach. Mon. Wea. 
Rev.  (in press). 
 
Zupanski, M., 2005: Maximum Likelihood Ensemble Filter: 
Theoretical Aspects. Mon. Wea. Rev., 133, 1710–1726. 
 
 

(a) 


