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1.  INTRODUCTION 
 

Weather forecasts in the Intermountain West 
are important for a variety of reasons, including 
public safety, agricultural planning, and water 
management.  Water resource management is 
becoming more critical as competition for water 
increases, while water supplies diminish.  Weather 
forecasts have recently been merged with 
hydrological models to provide more accurate 
streamflow prediction (Hay et al., 2002; Hay and 
Clark, 2003).  This is being done at the same time 
that weather forecasts are improving rapidly, and 
verification of those forecasts is on-going.  In 
addition, weather forecasting is particularly difficult 
in mountainous terrain where a large portion of 
streamflow runoff originates. 

Various approaches exist for incorporating 
realistic weather forecasts into streamflow 
prediction.  One approach is to use data from the 
new National Digital Forecast Database (NDFD) 
(Glahn and Ruth, 2003) from the National Weather 
Service (NWS), which issues 7-day forecasts of 
meteorological parameters two times each day on 
a 5-km grid.  Although this is a useful, new data 
product, verification of the NDFD has not been 
widely published yet. 

Another approach is to use medium-range 
forecasts from global models run by the National 
Center for Environmental Prediction (NCEP).  
These forecasts have the advantage of going out 
further in time (up to 15 days), but are quite coarse 
spatially (usually 2.5° grid cells in latitude and 
longitude).  Model Output Statistics (MOS) is one 
method that is often used for “downscaling” 
forecasts to point measurements (Glahn and 
Lowry, 1972; Murphy, 1999; Antolik, 2000; Clark et 
al., 2004).  Recently, Clark and Hay (2004) have 
devised a method of “downscaling” medium-range 
forecasts to point measurements within various 
watershed basins across the United States. 
Predictor variables, from a historical archive of 
global NCEP forecasts, are regressed with actual 

measurements from individual stations to forecast 
maximum and minimum temperatures. 

In this paper, we examine the quality of 
temperature forecasts from both the NDFD and 
downscaled forecasts from the NCEP 
Experimental week 2 product (Hamill et al, 2004) 
over mountainous terrain in Idaho and 
northwestern Montana.  The NCEP data are 
regressed with data from the Natural Resources 
Conservation Service’s (NRCS) SNOpack 
TELemetry (SNOTEL) archive through 2001.  The 
downscaled NCEP forecasts for 2002 through 
2005 for the months of streamflow runoff (April 
through July) are then compared with actual 
SNOTEL observations.  The NDFD data for 2005 
are also compared with the SNOTEL data; the 
NDFD data from 2005 were the only data available 
for this study.  The mean absolute error (MAE) 
and the rank probability skill score (RPSS) for both 
the NDFD and downscaled NCEP forecasts are 
presented.  The downscaled NCEP results exhibit 
little dependence on elevation, but the accuracy of 
the NDFD forecasts decreases with increasing 
elevation. 
 
2.  DATA 
 
2.1 Study Area 

The study area for this research is shown in 
Figure 1 and is comprised of the state of Idaho 
and northwestern Montana.  The intersections of 
the latitude and longitude lines in Figure 1 
designate the locations of the NCEP forecasts.  
The boxes formed by the latitude and longitude 
lines define twelve grid cells over the study area 
from 40 N to 50 N and from 110 W to 117.5 W.  
The black circles represent the locations of the 
SNOTEL observations. 
 
2.2 Observations 

This study uses maximum and minimum 
temperatures measured at SNOpack TELemetry 
(SNOTEL) sites across Idaho and northwest 
Montana (Figure 1) both to build regression 
equations for downscaling the NCEP forecasts 
and as a baseline from which to compare recent 
NDFD and NCEP forecasts in the Intermountain 
West.  Data collected from these stations are 
available in near real-time from the Natural 
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Resources Conservation Service 
(http://www.wcc.nrcs.usda.gov/snotel/).  There are 
currently 127 stations in Idaho and northwest 
Montana that fall within our study area and have 
less than 10% of their data missing.  The majority 
of the stations that are currently operational began 
recording data between 1989 and 1991.  Quality 
control was performed on the SNOTEL data by 
locating errors using a strict set of guidelines 
(Reek et al., 1992).  Missing daily data values 
were computed and inserted using a techniques 
developed by Eisheid et al. (2000). 
    
2.3 Forecast datasets 

NDFD. Data from the National Digital Forecast 
Database (NDFD), produced by the National 
Weather Service (NWS) (Glahn and Ruth, 2003), 
is used here to compare with the SNOTEL 
observations.  The 7-day maximum and minimum 
temperatures have a spatial resolution of 5 km. 
The data were matched to SNOTEL sites simply 
by selecting the individual NDFD grid cell that 
contained the SNOTEL site.  Data from the NDFD 

were downloaded daily via automated FTP directly 
from the NWS during the 2005 snowmelt season 
(March-July); the Pacific Northwest data subset is 
used here. 
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Figure 1:  Map of the study area.  The 
intersections of the latitude and longitude lines 
designate the locations of the NCEP forecasts.  
The boxes formed by the latitude and longitude 
lines define twelve grid cells over the study 
area.  The circles represent locations where 
the SNOTEL observations are made. 

NCEP.  Data from NCEP’s Global Forecasting 
System (GFS) model [formerly the Medium Range 
Forecast model (MRF)] are used here in two ways.  
First, the archive of “reforecasted” data (1979-
2001) is used to create regression equations that 
downscale the forecasts to the locations of the 
SNOTEL sites.  Second, recent forecasts during 
the snowmelt seasons for 2002 through 2005 are 
downscaled, then compared with the actual 
SNOTEL temperature observations for those 
years.   

47°30’N 
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The GFS “reforecasted” data are available via 
FTP at the following site: 

 
ftp:://ftp.cdc.noaa.gov/Datasets.other/refcst/ensdata/ 
 

42°30’N A lengthy archive of forecasts is needed to 
produce accurate MOS-based regression 
equations for the downscaling process.  The real-
time forecasts can be downloaded via FTP from: 
 

ftp://ftp.cdc.noaa.gov/Public/jsw/refcst/ 
 

The NCEP forecasts (both real-time and 
archived data) were generated using a frozen 
version of the T62 forecast model using 28-sigmal 
levels, saving forecasted output every 12 hours 
out to 15 days (Hamill et al, 2004).  The 12-hour 
output represents the value of the variable from 
the previous 12 hours.  The NCEP forecasts are 
generated from a 15-member ensemble that 
contains a control run and 7-paired forecasts 
centered about the control run, each using a 
slightly different set of initial conditions.  The 
model provides global forecasts with a horizontal 
resolution of approximately 2.5°.  The forecasted 
variables included in this study are 2-meter air 
temperature, mean sea-level pressure, relative 
humidity, 10-meter meridional wind, 10-meter 
zonal wind, total column precipitable water, and 
accumulated water.  Clark and Hay (2004) 
identified this set of variables as important in 
prediction of 2-meter air temperatures.   
 
3.  METHODS 
 

Multiple linear regression with forward 
selection is used to determine the MOS-based 
regression equations for downscaling.  Unique 
regression equations are generated for each 
station, variable, month, and forecast day (1 to 15) 
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using the technique outlined by Clark and Hay 
(2004). 
 
3.1 Matching NCEP and SNOTEL temperatures 

The NCEP forecasts and SNOTEL 
observations must be matched in both time and 
space for proper downscaling.  Temporally, each 
NCEP variable is forecasted every 12 hours.  That 
is, the value forecasted is for the previous 12-hour 
reference time, then out to the thirty forecast 
leadtimes (15 days).  For example, the forecasted 
temperature at 0000 UTC corresponds to 5 pm 
(Mountain Standard Time; MST) and 12UTC 
corresponds to 5 am MST.  Figure 2 shows that 
for Day (N) the maximum temperature will typically 
be achieved between 12UTC Day (N) and 00UTC 
Day (N), and the minimum temperature will 
typically be achieved between 00UTC Day (N-1) 
and 12UTC Day (N).  Therefore, we calculate the 
downscaled minimum temperature forecasts using 
forecast leadtimes of 1, 3, 5…29, and the 
downscaled maximum temperature forecasts are 
for forecast leadtimes of 2, 4, 6…30.  Therefore, 
daily forecasts of maximum and minimum 
temperatures can both be computed out to 15 
days.   

For each forecast day, the variables for the 
two surrounding forecast leadtimes comprise the 
predictor variables for the regression, i.e., to 
generate the maximum temperature for Day+0 
(2400 UTC) variables from 1200 UTC and 1200 
UTC Day+1 are included.  The mean ensemble 
NCEP values for each variable are matched so 
that each SNOTEL data value will have 21 
corresponding variables for regression, 7 variables 
for each of the three forecast leadtimes.  The first 
complete year in a given SNOTEL record is used 

as a starting point for the regression. 
The 21 NCEP forecast variables are then 

interpolated spatially to the location of the 
SNOTEL observations.  This is accomplished by 
selecting the grid cell that contains a particular 
SNOTEL site.  The four forecasts for each 
variable, issued for the corners of the grid cell, are 
then used to determine the forecasted value at the 
location of the SNOTEL site using Inverse-
Distance-Squared-Weighting (IDSW).  This 
interpolation was done for each forecast (all 
leadtimes) at each SNOTEL station location. 

Any days in the SNOTEL data that are missing 
from a given month are deleted from the NCEP 
dataset and are, therefore, not used for 
regression.  (Note that the missing values are 
replaced for the verification datasets from 2002 
through 2005, but the missing values typically 
were less than 3% of the data).  The NCEP 
dataset is also examined for “flatlined” data 
segments (erroneous constant values that persist 
within a time series), and those days are then 
removed from the regression datasets.  

Data outliers are removed from both the 
SNOTEL and NCEP data using the method of 
Median of Absolute Deviations about the Median 
(MAD).  The equation used to detect outliers with 
the MAD technique is: 

 
    ( )}{*4826.1 XmedianxmedianS i −=     (1) 
 
The value 1.4826 is used so that S will be 
approximately equal to the standard deviation for 
normally distributed data (Pearson, 2001, 2002).  
A rejection threshold (t*S) is created using t equal 
to 3, which is similar to the conventional 3-sigma 

 
Figure 2: Time line of forecasted maximum and minimum temperatures at Day (N). 

 



rejection technique (Costa et al., 1991).  Any value 
exceeding this threshold is then determined to be 
an outlier and is removed from the dataset.   
 
3.2 Downscaling Regression Coefficients 

MOS techniques were used to create the 
regression equations for downscaling (Clark et al., 
2004; Hamill et al, 2004).  By downscaling the 
global forecasts to weather station locations, any 
existing bias in the forecasted values is 
significantly reduced. 

The previously created dataset described in 
section 3.1 is used as input into the regression 
model.  The 21 interpolated NCEP variables are 
then regressed against the historic SNOTEL 
temperatures using singular value decomposition 
to determine a regression equation for the desired 
month.  Each year is successively held out of the 
regression computation for cross-validation. 

Using multiple linear regression with forward 
selection, the MOS equations are generated using 
the NCEP variables as predictors.  The regression 
models take on the form of 

 
    εββββ +++++= kk xxxy ...22110 ,     (2) 
 
where the kth value represents the final predictor 
added, β is the regression coefficient, x  is the 
predictor variable, and ε represents the remaining 
unexplained variance.  Using the singular-value 
decomposition algorithm (Press et al., 1992), the 
predictor variable that explains the greatest 
amount of variance is removed.  The remaining 
variables are then regressed once again to find 
the predictor variable that explains the largest 
amount of the remaining variance.  This process 
continues until an additional variable explains less 
than 1% of the variance (Antolik, 2000).  The 
standard deviation of the regression residuals is 
retained and the resulting regression equation is 
applied to the year withheld for cross-validation.  A 
correlation coefficient is calculated and the 
process repeats for each year beginning from the 
first complete year of the station through 2001.  
The set of equations that produces the largest 
correlation coefficient is retained along with the 
standard deviation of the regression residuals.  
This procedure is repeated for each station, 
variable, month, and forecast day. 
 
3.3 Downscaled-Forecast Production 

The MOS-based regression equations 
developed from the historical forecasts and station 
observations are then used to generate real-time 
forecasts. The weights obtained from the original 

interpolation process are used to downscale the 
21 variables from each of the four surrounding 
NCEP forecast points to the station location.  The 
regression coefficients are then applied to the 21 
NCEP predictor variables and a new temperature 
is computed for each forecast day (1 to 15).  Daily 
forecasts are generated for each station, variable 
(maximum and minimum temperature), and 
forecast leadtime based on the monthly 
regressions. 
 Modeling the standard error of the 
regression residuals stochastically creates 
probabilistic forecasts.  Using a normal Gaussian 
distribution with the mean equaling the forecasted 
temperature and a standard deviation equaling the 
model error, 100 random values are then 
generated.  This essentially creates 100 different 
realizations of the temperature on a given day.  
From this, the probability of exceeding any given 
temperature can be determined. 
 
4.  RESULTS 
 

The forecast skill of the downscaled forecasts 
using the MOS technique is assessed through the 
Ranked Probability Skill Score and the Median 
Absolute Error (Wilks, 1995).  Although many 
various statistical measures are available, the 
Ranked Probability Skill Score and Median 
Absolute Error are most commonly used in 
forecast verification.  The Ranked Probability Skill 
Score (RPSS) is computed from the ranked 
probability score: 
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where Ym is the forecasted probability of the 
forecasts for category m, and Om is the cumulative 
probability of the observed time series for category 
m.  Categories are determined from the observed 
time series based on equal interval.  The 
cumulative probabilities for each forecast 
observation pairs are then computed.  The RPS 
for a given forecast is then the squared difference 
of the forecasted probability and the observed 
probability squared, summed over all categories.  
The RPSS is the given as: 
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where RPSforecast is the mean ranked probability 
score for all forecasts, and RPSclimatology is the 
mean ranked probability score for the climatology. 

The RPSS for the downscaled temperatures 
for 2002 though 2005 are shown in Figure 3.  The 
dark line depicts the median RPSS for all stations 
for the maximum temperature, and the gray line 
represents minimum temperature.  For the 
duration of the snowmelt season, the downscaled 
forecasts exhibit a higher degree of predictability 
compared to the climatology out to approximately 
10 to 11 days.  The RPSS for Tmin and Tmax are 
comparable for each month. 

The median absolute error (MAE) is used to 
compare the raw NCEP forecasts, the downscaled 
NCEP forecasts, and the NDFD forecasts for 2005 
only; NDFD data were only available for that year.  
Figure 4 illustrates the MAE for the maximum and 
minimum temperatures during the 2005 snowmelt 
season.  In general, the downscaled NCEP 
forecasts are comparable to the NDFD forecasts 
at each leadtime, except for Tmin in June and July 
where the downscaled NCEP forecasts are better 
(lower MAE) than the NDFD forecasts.  This may 
be due to the fact that only a single year is used 
for computing the MAE for both the NDFD and 
downscaled NCEP forecasts.  So it is possible that 
these forecasts will have similar MAE values when 
multiple years are examined.  It is also notable 
that the downscaling process greatly improves the 
raw NCEP forecasts of the minimum temperature 
throughout the entire snowmelt season and at 
short leadtimes for Tmax in April.     

Figure 3:  Ranked probability skill scores 
during the snowmelt season for Tmin (gray 
line) and Tmax (black line) for years 2002 -
2005. 

 

The influence of elevation on forecast ability is 
also examined.  Figure 5 displays the median 
absolute errors as a function of elevation of the 
SNOTEL sites.  The decreasing trend in the NCEP 
errors is clearly evident as elevation increases.  
This is primarily because the downscaling process 
essentially accounts for elevation by interpolating 
the surrounding NCEP forecast points to the 
station location in determining the regression 
coefficients.   

The dependence of the NDFD forecasts on 
elevation is less clear in Figure 5, but is made 
more apparent in Table 1.  Table 1 shows the 
mean and standard deviation of the MAE for July 
2005 in various elevation zones.  While the mean 
of the NDFD MAE values does not significantly 
change between the elevation groups, the 
standard deviation of the forecast errors increases 
with increasing elevation.  The mean of the NCEP 
MAE values steadily decrease with elevation, 
while the standard deviation remains fairly 
constant.   

The downscaled forecasts appear to produce 
smaller errors at higher elevations than the NDFD 
forecasts.  However, the cost of creating the 
downscaled forecasts needs to be examined in 
relation to the ease-of-use of the NDFD forecasts.  
Although easily transferable to other locations 
once the techniques have been developed, the 
downscaled forecasts require a large historic 
forecast dataset, preferably from a frozen version 
of a forecast model, which requires a significant 
amount of effort.  However, the downscaled 
forecasts may provide a few extra days of 
forecasting skill, beyond the NDFD forecasts, from 
7 to 10 days.  

 



 

 

 
Figure 4:  Median absolute error (MAE) at different forecast leadtimes for NDFD forecasts (solid 
white line), downscaled NCEP forecasts (solid black line), and raw NCEP forecasts (dashed 
black line). 

 
Figure 5:  Median absolute error (MAE) as a 
function of elevation.  NCEP errors are 
displayed as black, NDFD as gray. 

 

 
 

Table 1:  Mean and standard deviation of the 
Mean Absolute Error (MAE) for downscaled 
NCEP forecasts and NDFD forecasts for July 
2005 by elevation. 
 
Elevation (m) NCEP MAE NDFD MAE 

(mean & std) (mean & std) 
1000 - 1500 2.42 ± 0.25 2.59 ± 0.65 
1500 - 2000 2.07 ± 0.44 2.40 ± 0.74 
2000 - 2500 1.71 ± 0.35 2.35 ± 0.85 
2500 - 3000 1.53 ± 0.21 2.83 ± 1.08 

 

 



5. Conclusions 
 

As part of a larger project to improve 
streamflow prediction, weather forecasts for the 
Intermountain West during the snowmelt season 
(April-July) are examined from both the National 
Digital Forecast Database (NDFD) and 
downscaled from the Global Forecast System 
(GFS) model from the National Center for 
Environmental Prediction (NCEP).  The 
downscaled NCEP forecasts at SNOTEL sites in 
Idaho and northwestern Montana exhibit 
forecasting skill out to about 10 to 11 days in 
both maximum and minimum daily temperatures 
for years 2002 through 2005.  The downscaled 
forecasts are based on regression equations 
using the historical archives of SNOTEL 
observations (variable length) and NCEP 
reforecasted data from 1979 to 2001.   

The Mean Absolute Error (MAE) is used to 
compare the raw NCEP forecasts, downscaled 
NCEP forecasts, and the NDFD for 2005.  The 
downscaled NCEP forecasts are comparable to 
the NDFD forecasts in most cases, except for 
forecasts of minimum temperature in June and 
July.  A closer examination of the MAE values 
for Tmin in July 2005 show that the downscaled 
NCEP forecasts have lower MAE values at 
higher elevations than the NDFD forecasts. 

Although each forecasting method 
performed well over the Intermountain West, 
there are certain advantages and disadvantages 
to each.  The NDFD forecasts are readily 
available and easy to use, although they only 
extend to 7 days.  The downscaled NCEP 
forecasts require a large initial time investment 
to generate the regression equations, but they 
produce forecasts with some skill out to 10 or 11 
days. 
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