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1 Introduction

The statistical equilibrium of barotropic flows on a
rotating sphere is simulated in a wide range of pa-
rameter space by Monte-Carlo methods. A spin-
lattice Hamiltonian with a canonical constraint on
the kinetic energy and a microcanonical constraint
on the relative enstrophy is formulated as a con-
vergent family of finite dimensional approximations
of the barotropic vortex statistic on the rotating
sphere. As this spin-lattice Hamiltonian model can-
not be solved exactly since the nonzero rotation of
the sphere will result in a difficult external field like
term which is spatially inhomogeneous, Monte-Carlo
simulations are used to calculate the spin-spin cor-
relations and the mean nearest neighbor parity as
order parameters or indicators of phase transitions
in the system. Interestingly we find that at ex-
tremely high energy levels or negative temperatures,
the preferred state is a superrotational equilibrium
state aligned with the planetary spin. For large val-
ues of the planetary spin compared with the rela-
tive enstrophy there appears to be two phase tran-
sitions when the temperature varies from a numer-
ically large negative value to a large positive value.
The latter arises as constrained energy minimizers
which can undergo a tilt instability of the axis of
atmospheric rotation. This means the axis of at-
mospheric rotation does not always point in exactly
the same direction of the axis of planetary spin but
wobbles a little. A simple mean field theory which
constrains the relative enstrophy only in an averaged
sense and relaxes the angular momentum, gives criti-
cal temperatures that are consistent with the Monte-
Carlo simulations.
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2 Barotropic Vorticity Equa-
tion on rotating sphere

The Barotropic Vorticity equation (BVE) on a ro-
tating sphere is given by

Dq

Dt
= qt + (~u · ~∇)q = 0,

where D/Dt is the material derivative, q is the total
vorticity and ~u is the velocity. It states the conser-
vation of total vorticity q by the relative flow ~u on
the rotating sphere.

The BVE describes the evolution of a homoge-
neous, non-divergent, incompressible flow on the sur-
face of the sphere. The BVE is the simplest possible
model for ideal 2D flows on the rotating sphere. The
barotropic vorticity model conserves the kinetic en-
ergy and any function of the vorticity as Casimirs of
the governing equation.

2.1 Lattice approximation of the
BVE

Given N fixed mesh points ~x1, ~x2, ~x3, ..., ~xN on S2

and the voronoi cells based on this mesh [3], by dis-
cretizing the vorticity field as a piecewise constant
function ,we approximate the relative vorticity

w(x) =
N∑

j=1

sjHj(x),

where sj = w(j) and Hj(x) is the characteristic
function for the domain Dj , that is

Hj(x) =
{

1 x ∈ Dj

0 otherwise.

The domain Dj is the subset of the entire domain
consisting of points which are closer to ~xj than to
any other mesh site ~xk (also known as voronoi cell).



The choice of ~xj is arbitrary with one constraint,
that the areas Aj of each domain Dj are approxi-
mately equal.

Then we get spin-lattice Hamiltonian

HN [q] = −1
2

N∑

i=1

N∑

j 6=i

Jijsisj +
N∑

j=1

Fjsj ,

where Jij = 16π2

N2 log|1−xi ·xj | and Fj = 2π
N Ωcos θj .

The external fields Fj comes from the nonzero rota-
tion Ω > 0, and represent the coupling between the
local relative vorticity and the planetary vorticity
field. The presence of the second term is the source
of the much richer mathematical and physical prop-
erties of BVE on the rotating sphere as compared to
the Euler case on a non-rotating sphere.

2.2 Constrained variational theory
for the BVE on the rotating
sphere

Using the spherical harmonics eigenfunction expan-
sion

ω =
∑

l≥1,m

αlmψlm l = 1, .., +∞, m = −l, ..0, ..l,

where ψlm is the orthonormal basis of spherical har-
monics for the Hilbert space L2(S2). We can expand
the Hamiltonian function in terms of the orthonor-
mal spherical harmonics,

H[q] = −1
2

∫

S2
dx ψq

= −1
2

∫
dx ψ(x) [w(x) + 2Ω cos θ]

= −1
2
〈w,G[w]〉 − ΩC 〈ψ10, G[w]〉

=
1
2

∑

l,m

α2
lm

l(l + 1)
+

1
2
ΩCα10,

where G[ω] = −∑
l,m

αlm

l(l+1)ψlm and C = || cos θ||2.
Since we choose l 6= 0, the total circulation of

the vorticity field ω(x) is zero by the Stokes the-
orem, that is TC =

∫
s2 ωdx = 0. Then the only

constraint is the relative enstrophy Γr =
∫

s2 ω2dx =∑
l,m α2

lm = Qrel > 0.
Constrained variational problems for the BVE

on the rotating sphere had been formulated and
solved by Lim [4]. The main result is that at
any rate of spin Ω and relative enstrophy Qrel,

the unique global energy maximizer for fixed rela-
tive enstrophy corresponds to solid-body rotation,
w0

Max(Qrel) =
√

Qrelψ10 in the direction of Ω.
Another solution, the counter-rotating steady-state
w0

min(Qrel) = −√Qrelψ10, is a constrained energy
minimum provided the relative enstrophy is small
enough, i.e., Qrel < Ω2C2 where C = || cos θ ||2. If
Ω2C2 < Qrel, then w0

min(Qrel) is a saddle point.
Given the conditions for w0

min(Qrel) to be a local
constrained minima, the solid-body rotation oppo-
site to spin w0

min(Qrel) is a nonlinearly stable equi-
librium of the BVE. The global constrained maxi-
mizer w0

Max(Qrel) corresponding to solid-body ro-
tation in the direction of spin, is always a nonlin-
early stable equilibria of the BVE. For small rela-
tive enstrophy relative to the spin rate, the pro- and
counter-rotating solid-body states are both nonlin-
early stable. At higher relative enstrophy values,
only the pro-rotating state is nonlinearly stable; the
counter-rotating states are saddle points.

3 Energy-Relative enstrophy
Model

The equilibrium statistical mechanics of the BVE
on a rotating sphere is formulated on the basis of a
canonical constraint on the kinetic energy , a micro-
canonical constraint on the relative enstrophy and
total circulation is set to zero. That is
• Canonical constraint on the kinetic energy
•Microcanonical constraint on the relative enstro-

phy
• Total circulation is set to zero
Why did we choose this model? This set of

constraints will yield mathematically elegant and
physically significant statements and it can remove
the low temperature defect in the classical energy-
enstrophy theory (canonical in both kinetic energy
and enstrophy). It also should be a better model to
simulate the phase-transition since it is well defined
at all temperatures.

We do not fix the angular momentum because
that would make the rotating BVE look same as
the non rotating case as Frederiksen did [5]. Fred-
eriksen was not looking to model sup-rotation at
all because the BVE with fixed angular momentum
cannot gain or loose angular momentum from ini-
tial value of angular momentum in the atmosphere.
Relative to the aim of getting a statistical mechanics
model for super-rotation where we know the atmo-



sphere gained its angular momentum from the solid
planet, it is a better model to free the angular mo-
mentum from constraint except the implicit inequal-
ity constraint of being bounded above by square-root
of relative enstrophy. So the dynamics and stabil-
ity properties arising from this model are not ex-
actly those of BVE itself, but rather the generalized
barotropic flows on a rotating sphere, that exchange
energy and angular momentum inviscidly with their
respective reservoirs.

4 Partition function and Gibbs
canonical-microcanonical
probability

The spin-lattice partition function is ,

ZN =
∫

(ΠN
j=1dsj)δ(NQN − 4π

N∑

j=1

s2
j ) exp[−βHN ]

where HN is spin-lattice Hamiltonian.
The Gibbs canonical-microcanonical probability

is,

PG =
1

ZN
exp[−βHN ]δ(NQN − 4π

N∑

j=1

s2
j ).

5 Monte-Carlo simulations
and some results

Monte-Carlo simulations in our energy-relative en-
strophy model on the rotating sphere conserve both
the discrete total circulation and the relative enstro-
phy. The main reason for not fixing angular momen-
tum is to model super and sub-rotation in planetary
atmosphere, and the tilt instability where the axis
of angular momentum wobbles.

5.1 Super-Rotation

By recent variational theory for super-rotation in the
BVE model on a rotating sphere[4], there are pro
and counter-rotating solid body flows arise in the
BVE as the nonlinearly stable states. The Monte-
Carlo simulations agree with this theory. When β is
negative, the first term of the spin-lattice Hamilto-
nian shows that any vortex surrounded by vortices

of the same sign will get higher energy; the second
term gives that the sites at north pole have the most
positive values and the sites at the south pole have
the most negative values to get higher energy, since
the cosθ varies from 1 at north pole to -1 at the
south pole. In this case the strong vortices of either
sign are surrounded by other strong vortices of like
sign and the greatest vorticity sites are at the north
pole while the sites with the least vorticity are at
the south pole.

The above state corresponds to the unique global
energy maximizer in variational theory — at any
spin rate Ω and fixed relative enstrophy Qrel ,
the system will get the maximum energy with
w0

Max(Qrel) =
√

Qrelψ10 in the direction of Ω. It
is a nonlinearly stable state (Figure 1). The color
convention for positive vorticity is red and for neg-
ative is blue. With the predominance of red colors
in the north hemisphere denotes the most probable
state for negative β is a pro-rotating solid -body flow
state.
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Figure 1: Negative β – Super-Rotation

5.2 Sub-Rotation

By variational theory [4], when β is positive and
the relative enstrophy Qrel is less than Ω2C2 , there
is a nonlinearly stable state getting local minimum
energy with w0

min(Qrel) = −√Qrelψ10.

5.3 Phase Transition

According to the mean field theory given by Lim [1],
there should exist two phase transitions at positive
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Figure 2: Positive β – Sub-Rotation

and negative temperatures when the planetary spin
is large enough compared to relative enstrophy .

Figure 3: The most probable state vs. β

5.4 Wobble

Relaxation of angular momentum is a necessary step
in the modeling of the important tilt instability
where the rotational axis of the barotropic atmo-
sphere tilts away from the fixed north-south axis of
planetary spin.

The z component of the angular momentum is
ψ(1, 0) , the x and y components are ψ(1, 1) and
ψ(1,−1). Adding small amounts of x and y angular
momenta to a large z angular momentum is equiva-
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Figure 4: Internal energy vs. β
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Figure 5: Specific heat vs. β



lent to tilting the axis of the atmospheric rotations
away from the planetary spin axis (Figure 6).

Figure 6: The dashed blue line denotes the rota-
tional axis of the atmosphere while the red solid line
is the planetary spin axis.

6 Conclusion

A detailed comparision with the Monte-Carlo simu-
lation results reported here and the qualitative re-
sults from mean field theory [1] will be presented
in Ding and Lim [2]. In addition, we also refer the
reader to the report by Mavi and Lim [6] in the AMS
proceedings, on the application of a one-step renor-
malization method known as the Bragg method to
the barotropic flow problem on a rotating sphere.
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