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1. Introduction 
 
 To gain a complete understanding of convective 

storm dynamics and to initialize storm-resolving nu-
merical weather prediction (NWP) models, a complete 
description of the three-dimensional (3-D) wind, ther-
modynamic and microphysical fields is needed. The 
Doppler weather radar, as the only platform that pro-
vides volumetric information at the convective storm 
scale, only observes radial velocity (Vr) and reflectivity 
(Z). In recent years, various techniques have been de-
veloped for analyzing and retrieving the atmospheric 
state at the convective scale from Doppler radar data. 
They range from relatively simple single-Doppler ve-
locity retrieval techniques to the four-dimensional 
variational (4DVAR) method that employs a full pre-
diction model and its adjoint.  

For the purpose of initializing storm-scale NWP 
models, the 4DVAR method (e.g., Sun and Crook 1997; 
Gao et al. 1998) promises to provide an initial condition 
that is consistent with the prediction model and is able 
to effectively use multiple volume scans from radar. 
However, the need to develop and maintain an adjoint 
code and the associated high computing requirement 
have limited 4DVAR assimilations of Doppler radar 
data to relatively simple applications and model set-
tings. The 4DVAR method appears to also have diffi-
culties in dealing with highly nonlinear discontinuous 
physical processes which become increasingly impor-
tant at the convective scale. 

Since its first introduction by Evensen (1994), the 
ensemble Kalman filter (EnKF) technique for data as-
similation has received much attention. Rather than 
solving the equation for the time evolution of the prob-
ability density function of model state, the EnKF meth-
ods apply the Monte Carlo method to estimate the fore-
cast error statistics. A large ensemble of model states 
are integrated forward in time using the dynamic equa-
tions, the moments of the probability density function 
are then calculated from this ensemble for different 
times (Evensen 2003). 
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Recently, EnKF was applied to the assimilation of 
simulated Doppler radar data for modeled convective 
storms (Snyder and Zhang 2003; Zhang et al. 2004; 
Tong and Xue 2005) and of real radar data by Dowell et 
al. (2004). Very encouraging results are obtained in 
these studies in retrieving wind, temperature and mois-
ture field for convective storms. Tong and Xue (2005) 
report on the development of an EnKF system based on 
a general purpose compressible nonhydrostatic model, 
and on the application of the system to the assimilation 
of both radial velocity and reflectivity data from a sin-
gle Doppler radar. The forecast model involves com-
plex ice microphysics rather simple warm rain micro-
physics used in earlier studies. The ability of the EnKF 
scheme in 'recovering' the complete state of the model 
thunderstorms, including wind, temperature, pressure 
and all water and ice fields is shown to be excellent. 

One of the advantages of EnKF method over 
4DVAR is that it can dynamically evolve the back-
ground error covariances throughout the assimilation 
cycles, thereby providing valuable uncertainty informa-
tion on both analysis and forecast. Recently, Caya et al. 
(2005) showed that with simulated radar data, the EnKF 
method can outperform a similarly configured 4DVAR 
scheme after the first few assimilation cycles.  When 
combined with an existing ensemble forecast system 
(operational ensemble forecasting system is usually run 
at a lower resolution compared to the operational de-
terministic forecast), the EnKF method can provide 
quality analyses with a relatively small incremental cost 
compared to a 4DVAR system that requires repeated 
integrations of the forward prediction model and its 
adjoint.  

Still, the overall computational cost of ensemble-
based assimilation methods is significant because of the 
need for running an ensemble of forecast and analysis 
of nontrivial sizes (usually a few tens to a few hun-
dreds), especially when high-density data are involved 
and when the ensemble of all forecasts is run at high 
resolutions. One of the major sources of errors with the 
ensemble-based DA methods is the sampling error as-
sociated with the limited ensemble size. A larger en-
semble helps improve the background error covariance 
estimation. 
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With 4DVAR, the incremental method proposed by 
Courtier et al. (1994) enables the use of the so-called 
double loops and the use of different resolutions of the 
forecast model in the 4DVAR minimization procedure. 
Within such an approach, the forward prediction model 
is run at a higher spatial resolution that defines the 
nonlinear trajectory around which the linear tangent and 
the adjoint models are formulated. To reduce computa-
tional cost, the tangent linear and adjoint models are run 
at a reduced resolution within the inner cost-function 
minimization loops; as a result, the analysis increment 
is obtained at this lower resolution (LR) but is up con-
verted (usually through interpolation) and added to the 
high-resolution (HR) forecast background to obtain a 
single HR analysis. This analysis serves as the initial 
condition for the HR forecast. It was the cost saving 
associated with such an incremental procedure that 
made the operational implementations of 4DVAR prac-
tical, and such a procedure is employed in all of today's 
operational 4DVAR systems. 

In this paper, we propose a dual-resolution (DR) 
hybrid ensemble DA strategy that is in a way analogous 
to the incremental 4DVAR approach, with the primary 
goal of reducing the computational cost of the overall 
EnKF analysis while trying to maintain the benefits of 
the EnKF algorithms. With this strategy, an ensemble 
of forecasts is run at a lower resolution which provides 
the background error covariance estimation for both an 
ensemble of LR analyses and a single HR analysis. The 
HR forecast is used to completely replace or partially 
adjust the ensemble mean of forecast so as to pass the 
benefit of the HR to the LR ensemble. For storm-scale 
applications where the grid resolution tends to be mar-
ginal at resolving convective storms, the benefit of hav-
ing a high-resolution component within the DA system 
can be significant; at the same time, the cross-
covariances among the state variables play a key role in 
'retrieving' the variables not directly observed by the 
radar. 

We build our DR ensemble DA system based on 
the ensemble square-root filter (EnSRF) algorithm of 
Whitaker and Hamil (2002), which is also used by Sny-
der and Zhang (2003) and Xue et al. (2005). In fact, the 
implementation follows closely the latter, using the 
same compressible nonhydrostatic model, the ARPS 
(Xue et al. 2000; 2003). We test the strategy for the 
assimilation of simulated radial velocity data, sampled 
from a simulated supercell storm. The performance of 
the DR system is compared with the results obtained 
using a single high resolution (SR). 

The rest of this paper is organized as follows. In 
section 2, we describe our ensemble DA system and the 
design of the OSS (Observing System Simulation) ex-
periments. The experimental results are presented in 
section 3. Summary and conclusions are given in sec-
tion 4. 

2. Assimilation System and Experimental Design 
 
a. Hybrid dual-resolution EnSRF algorithm 

 
The basic analysis equation of the Kalman filter is 

( )
Tf o fa H= ⎡ ⎤+ −⎣ ⎦x x K y x , (1) 

where 
 1( )b TT −= +K PH R HP H  (2)

is called the optimal weighting matrix (Kalnay 2003) or 
the Kalman gain matrix. Here, x is the state vector we 
seek to analyze or estimate, and superscripts a and f 
refer to the analysis (posteriori estimate) and back-
ground forecast (prior estimate), respectively, and yo is 
the observation vector, following the standard notion of 
Ide et al (1997). H is the forward observation operator 
that maps the model state to the observations, and H is 
the linearized version of H. R and Pb are, respectively, 
the covariance matrices for the observation and back-
ground errors. 

The key to the ensemble-based filter algorithms is 
the estimation of the background error covariance and 
the calculation of the Kalman gain matrix using a fore-
cast ensemble. It was first proposed by Evensen (1994). 
Since then, there have been a number of further devel-
opments with the algorithm to ensure that the technique 
works when the ensemble size is relatively small (Bur-
gers et al. 1998; Houtekamer and Mitchell 1998). 
Whitaker and Hamil (2002) proposed an ensemble 
square-root filter algorithm (EnSRF) that does not re-
quire the perturbation of observations; the assumption 
that the observational errors are uncorrelated enables the 
processing of the observations serially, one at a time,  
leading to a considerable simplification of the analysis 
scheme.  

As with all Kalman filter algorithms, the EnSRF al-
gorithm proceeds in two steps, an analysis step and a 
forecast or propagation step. In the analysis step, the 
following equations are used to update the state vectors 
for the ensemble mean and individual ensemble mem-
bers:  

( ) ,o fa b H⎡ ⎤= + −⎣ ⎦x x K y x  (3) 

( )( ),a a f f
n nβ α= + − −x x I KH x x  (4) 

where n represents the nth ensemble member and the 
overbar denotes the ensemble mean. β  is a covariance 
inflation factor that is usually slightly larger than 1. The 
α  is given in the EnSRF algorithm by (Whitaker and 
Hamill 2002)  

1
1

1 ( )b Tα −
−

⎡ ⎤= + +⎢ ⎥⎣ ⎦
R HP H R . (5) 

This procedure produces an ensemble of analyses, as 
given by Eq. (4). 

The terms related to the forecast error covariance 
Pb are calculated according to 
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1

1 [ ][ ( ) ( )]
1

N
b T b b b b T
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n

H H
N =

⎡ ⎤= − −⎢ ⎥⎣ ⎦− ∑P H x x x x  (6) 

and 

1

1 [ ( ) ( )][ ( ) ( )]
1

N
b T b b b b T

n n
n

H H H H
N =

⎡ ⎤= − −⎢ ⎥⎣ ⎦− ∑HP H x x x x

 (7) 
where N is the number of ensemble members. As can 
be seen, the nonlinear observation operator H instead of 
its linearized version H is used in the equations, remov-
ing the approximation associated with linearization. 

In the forecast step, forecasts are made from each 
ensemble analysis and are used as the prior estimate or 
background in the next analysis-forecast cycle; the al-
gorithm continues as the analysis cycles are repeated. 

As discussed earlier, the EnKF or EnSRF algo-
rithms have been successfully applied to the assimila-
tion of single-Doppler radar observations into cloud 
models (Snyder and Zhang 2003; Zhang et al. 2004; 
Dowell et al. 2004; Tong and Xue 2005, Xue et al. 
2005). The algorithms are, however, expensive, limiting 
their real-time applications, especially at storm-
resolving resolutions over large model domains. For 
this reason, a more efficient algorithm is proposed here 
that involves the use of forecast and analysis ensembles 
produced at a lower resolution plus single analysis and 
forecast produced at a higher resolution. In this case, 
the background error covariance is estimated from the 
lower-resolution ensemble. The specific steps are given 
below: 
 
1)  Integrate a single HR model and an ensemble of LR 

models forward for the length of the analysis cycle or 
until the next observation is available, so as to yield a 
single HR forecast f

hx  and an ensemble of LR fore-
casts f

nx , respectively; 
2)  Calculate the ensemble mean and ensemble perturba-

tions from the mean from the LR ensemble forecasts 
according to 

1

1

N
f f

n
n

N −

=

= ∑x x , (8) 

' f f
n n= −x x x . (9) 

3)  Interpolate HR forecast f
hx  to the LR grid to obtain 

f
hcx , which is then used to adjust the ensemble mean 

of the LR forecasts, according to 
  (1 )f f f

hcα α= + −x x x , (10) 
 where α and (1-α) are the weight coefficients for the 

HR and the LR ensemble mean forecasts, respec-
tively and the value of α should be between 0 and 1; 

4)  Use Eqs. (3)-(7) to perform EnSRF analyses serially, 
one observation at a time; the LR background error 
covariance is then interpolated to the high resolution 

grid and used to obtain a HR analysis based on Eqs. 
(1)-(2); 

5)  The LR EnSRF analyses and the single HR analysis 
are used as the initial conditions for the LR ensemble 
forecasts and for the single HR forecast, respectively. 
The forecasts are carried out to the next analysis 
time, from what another analysis and forecast cycle is 
repeated. 

 As pointed out earlier in introduction, our proposed 
dual-resolution hybrid procedure aims to obtain a qual-
ity analysis from which high-resolution prediction can 
be launched, by using background error covariance 
derived from a cheaper lower-resolution ensemble. For 
radar data, the covariance contains valuable information 
on the cross-correlation among different state variables 
and between the state variables and the radar observed 
quantities, and such information is key to the 'retrieval' 
of unobserved state variables. In addition, the ensemble 
also provides the uncertainty information that a single 
deterministic forecast cannot provide. In a sense, we 
attempt to combine the best of both worlds. In fact, a 
similar strategy has been proposed by Du (2004) in the 
ensemble forecast context by combining a single high-
resolution forecast with a lower-resolution forecast en-
semble. 

    
b. Prediction model and truth simulation for OSSEs 

 
In this study, we test our DR hybrid EnSRF algo-

rithm using simulated data from a classic May 20, 1977 
Del City, Oklahoma supercell storm (Ray et al. 1981). 
Such simulation experiments are commonly referred to 
as Observing System Simulation Experiments (OSSE, 
see, e.g., Lord et al. 1997). The prediction model, the 
ARPS, is used in a 3D cloud model mode and the prog-
nostic variables include three velocity components u, v, 
w, potential temperature θ, pressure p, and six catego-
ries of water substances, i.e., water vapor specific hu-
midity qv, and mixing ratios for cloud water qc, rain-
water qr, cloud ice qi, snow qs and hail qh. The micro-
physical processes are parameterized using the three-
category ice scheme of Lin et al. (1983). More details 
on the model can be found in (Xue et al. 2000; 2001). 

For our experiments, the model domain is 
64x64x16 km2. The LR and HR models have a 2 km 
and a 1 km horizontal grid spacing, respectively, while 
the vertical resolution is 500 m in both cases. The truth 
simulation or nature run is created using the 1 km hori-
zontal resolution and is initialized from a modified real 
sounding plus a 4 K ellipsoidal thermal bubble centered 
at x =48, y =16 and z =1.5 km, with radii of 10 km in x 
and y and 1.5 km in z direction. Open conditions are 
used at the lateral boundaries. The length of simulation 
is two hours. A constant wind of u = 3 ms-1 and v =14 
ms-1 is subtracted from the observed sounding to keep 
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the primary storm cell near the center of model grid. 
The evolution of the simulated storms is very similar to 
those documented in Xue et al. (2001). During the truth 
simulation, the initial convective cell strengthens over 
the first 20 minutes. The strength of the cell then de-
creases over the next 30 minutes or so, which is associ-
ated with the splitting of the cell into two at around 55 
minutes (Fig. 1). The right moving (relative to the 
storm motion vector which is towards north-northeast) 
cell tends to dominate the system; the updraft reaches a 
peak value of over 40 ms-1 at 90 minutes. The left mov-
ing cell starts to split again at 95 minutes. The initial 
cloud started to form at about 10 minutes, and rainwater 
formed at about 15 minutes. Ice phase fields appeared 
at about 20 minutes. 

 
c. Simulation of radar observations 

 
As in Snyder and Zhang (2003) and Tong and Xue 

(2005), the simulated observations are assumed to be 
available on the grid points. The simulated radial veloc-
ity, Vr, is calculated from  

 sin cos cos s sin
r

V u v co wφ θ φ θ θ= + +       (11) 

where θ is the elevation angle and φ is the azimuth 
angle of radar beams, and u, v and w are the model-
simulated velocities interpolated to the scalar points of 
staggered model grid. Random errors drawn from a 
normal distribution with zero mean and a standard de-
viation of 1 ms-1 are added to the simulated data. Since 
Vr is sampled directly from velocity fields, the effect of 
hydrometeor sedimentation is not involved. The 
ground-based radar is located at the southwest corner of 
the computational domain, i.e., at the origin of x-y co-
ordinate. As with most existing 4DVAR and EnKF 
studies, the prediction model is also assumed perfect, 
i.e., no model error is explicitly taken into account.  
 
d. Assimilation experiments 

 
We start the initial ensemble forecast at the 20 

minutes of model time when the storm cell developing 
out of an initial bubble reaches peak intensity. To ini-
tialize the ensemble members, random noises are added 
to the initially horizontally homogeneous background 
that is based on the environmental sounding. The ran-
dom noises are sampled from Gaussian distributions 
with zero mean and standard deviations of 3 m s-1 for u, 
v, and w, and 2 K for potential temperature. These set-

tings are same as Tong and Xue (2005). The pressure, 
moisture, and microphysical variables are not perturbed 
at this initial time. The observations are assimilated 
every 5 minutes. The first analysis is performed at 25 
minutes and 40 ensemble members are used. To spa-
tially smooth the analysis increments as well as to lo-
calize covariances, Eq. (4.10) of Gaspari and Cohn 
(1999) is used when calculating the background error 
matrix PHT as suggested by Houtekamer and Mitchell 
(2001). The weighting coefficient α is set to 0.5. 

As an initial effort, we perform two sets of experi-
ments, one using our proposed DR procedure and an-
other using a single high resolution (SR) for the ensem-
ble. For the latter, the algorithm is essentially the same 
as that used in Xue et al. (2005). Only radial velocity is 
assimilated in these experiments and the data are as-
sumed to be available in precipitation regions where 
reflectivity is greater than 10 dBZ. 

 
3. Results of Experiments 

 
This section presents some preliminary results 

from the OSS experiments described in the previous 
section. It can seen from Fig. 1 that 5 analysis cycles, 
by the time of 40 minutes, the basic structures of the 
updraft and horizontal flow in the DR analysis (Fig. 1e) 
are reasonably recovered, except for some noise around 
the main updraft core. The low-level cold pool and the 
associated flow divergence are still too weak at this 
time (Fig. 2e). By 60 minutes, the strength of the up-
draft and the magnitude of the potential temperature 
perturbations become reasonably good (Figs. 1f and 2f), 
but the left moving cell appears weaker, but the re-
trieved microphysical fields are rather close to the truth 
(not shown). By 100 minutes, the low-level flow (Fig. 
2h) and reflectivity patterns as well as the shape of the 
cold pool now agree quite well with the truth (Fig. 2d). 
The agreement at the 6 km level is even better (Figs. 1h 
and 1d). These results indicate that even with only the 
radial velocity data confined to the precipitation re-
gions, our DR assimilation system is able to rebuild the 
model storm quite well after a sufficient number of as-
similation cycles. The lowest panels of Fig. 1 and Fig. 2 
show the results of analysis using a single high (1 km) 
resolution with 40 members. The analyses are notably 
better than the corresponding DR analyses but the asso-
ciated computational cost is about twice.   
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Fig. 1. Vertical velocity w contours, at an interval of 4 ms-1with  negative contours dashed, and hori-
zontal wind vectors at 6 km above ground for the truth simulation (a)-(d); ensemble-mean analyses of 

the dual-resolution hybrid method (e)-(h); and ensemble-mean analyses from the single high-
resolution method (i)-(j), at 20, 40, 60 and 80 minutes of model time. 

 
The root-mean-square (rms) errors of the analyses 

using the DR (dashed curves) and SR (solid curves) 
methods are shown in Fig. 3. The rms errors are aver-
aged over those grid points where the reflectivity is 
greater than 10 dBZ. The rms errors of x-component of 
velocity u, vertical velocity w, perturbation potential 
temperature θ', water vapor mixing ratio qv, cloud water 
qc and reflectivity Z (derived from hydrometer variables 
rain water, snow and hail) in both experiments are 
shown to decrease rapidly starting from the time of first 

analysis (25 min.) during the first five analysis cycles 
and the analysis errors tend to stabilize at about 50 
minutes with both methods. After the analyses stabilize, 
the rms analysis errors for u are between 3 and 4 ms-1 
while those of SR method stay below 2.5 ms-1. The 
values are similar to w. For θ', the analysis errors de-
crease to less than 1.5 K and 0.5 K respectively at 100 
minutes or the end of assimilation window for the two 
methods (Fig 3c), while the error differences in the wa-
ter quantities are smaller (Figs. 3d-f). Not surprisingly, 
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the DR analyses are not as good as those using a single 
higher resolution, but the algorithm is still able to ob-
tain a quite reasonable estimate of the state of simulated 
storm, at a significant lower computational cost. The 

results indicate that the background error covariances 
obtained from the LR ensemble is still quite effective in 
the ensemble Kalman filter procedure. 
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Fig. 2. As Fig. 1, but for horizontal winds (vectors; ms-1), perturbation potential temperature (thick dashed 

contours at 1 K intervals) and simulated reflectivity (color shaded) at z=250m AGL.   
 

4. Summary and discussion 
 
A new efficient dual-resolution data assimilation 

algorithm is developed based on the ensemble Kalman 
filter method and tested with simulated radar data for a 
supercell storm. Within this algorithm, radar observa-
tions are assimilated on both high-resolution and lower 
resolution grids by using flow-dependent background 

error covariance estimated from the lower resolution 
forecast ensemble. The single high-resolution forecast 
is then used to adjust the ensemble mean of the lower 
resolution forecasts.   

It is shown that the flow-dependent and dynami-
cally evolved background error covariances estimated 
from the LR ensemble can be effectively used for the 
assimilation of radar observations. In general, the sys-
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tem is able to reestablish the model storm well after a 
number of assimilation cycles. The DR method has the 
advantage of a lower computational cost compared to 
standard ensemble Kalman filter method. The single 
high-resolution model run may provide valuable small-
scale details thereby reducing the impact of resolution-
related model errors. The use of a lower-resolution en-
semble provides the potential for using a larger ensem-

ble, which may yield a more accurate estimate of the 
error covariance structure. More experiments are 
needed to investigate the tradeoffs between accuracy 
and cost. We will investigate the performance of our 
procedure for larger resolution ratios in the future, and 
also evaluate of the quality of forecasts that start from 
the analyses of various methods. 
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Fig 3: The rms errors of the ensemble mean forecasts and analyses, averaged over points at 
which the reflectivity is greater than 10 dBZ for: (a) u, (b) w, (c)θ', (d) qv, (e) qc, (f) Z for the 

dual-resolution (dashed ) and single high-resolution (solid) experiments.  
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