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1 Introduction

We consider an ensemble of 2N vortices on a rotating
sphere. This model is in the theory of a barotropic
atmosphere with detectable phase transitions devel-
oped by Lim. The theory is relevant to weather
systems where atmospheres have significant inter-
actions with planetary surface. The Hamiltonian in
these systems is given by coupling of vortices. The
N point vortex problem for a finite number dynamic
vortices is described [Newton(2001)]. In this paper
we consider vortices on a fixed random lattice, sim-
ilar to Lim[Lim(2005a)][Lim(2005b)], however, we
will consider only vortices with spin of +1 or −1 as
these spins are intended to model fluid flow, we en-
force Stokes theorem by requiring N vortices of +1
spin and N vortices of −1 spin. We allow spins to
reconfigure within the lattice with out further con-
straint and find the statistically preferred states.

A mean field method on a related
model[Lim(2005c)], (where spins are allowed
to take on a continuous range of values), has
succesfully found phase transitions for the BVE
on a Rotating Sphere. There as here, angular
momentum of the fluids is conserved canonically,
this leads to the exciting result that super-rotation
and sub-rotational states are preferred in certain
thermodynamic regimes. The Bragg mean field ap-
proach on the 2N vortex model, corroborates these
previous results. These results are also in agreement
with Monte Carlo analysis[Lim and Nebus(2004)],
on the spherical logarithmic model. We shift from
the previous spherical model used by Lim to a
simplified discrete state model which enables us
to use the Bragg method to approximate the free
energy.

Our discrete vorticity model is a set X ={~xi} of
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2N random sites on the sphere with uniform dis-
tribution, each with a spin si in {+1,−1}, and in-
teracts with every other site as a function of dis-
tance. Each spin also interacts with the planetary
spin which is analogous an external magnetic field
in the Ising model. Contribution to the kinetic en-
ergy from planetary spin varies zonally, however, this
makes the external field inhomogeneous and difficult
to deal with analytically. Bragg and Williams used
a one step renormalization to investigate properties
of order-disorder in the Ising Model of a ferromag-
net. As the discretized BVE on a rotating sphere
is similar to the Ising Model of a ferromagnet in
an inhomogeneous field, we use the Bragg-Williams
renormalization technique to infer the order-disorder
properties of the fluid. In this setup we find a pos-
itive temperature phase transition at 0 < T < Tp

to the sub-rotating state. In negative temperature
there is a phase transition Tn < T < 0 to the super-
rotating state.

2 The Physical Picture

Time independent motion of incompressible invis-
cid single layer fluids can be completely described
by the stream function. This is in the hopes that we
can reproduce some of the occurring global phenom-
ena. It is well known that fluid behavior is chaotic,
and small scale fluctuations may give rise to large
scale behavior, nevertheless some weather patterns
can be reconstructed purely in equilibrium statistical
mechanics. Thus we consider the atmosphere as a
single layer of incompressible inviscid fluid. As our
interest is in global weather patterns, we will con-
sider the problem on the spherical geometry, with
non-negative angular velocity Ω ≥ 0, and relative
stream function ψ. The Barotropic Vorticity Equa-
tion is

D

Dt
q = 0



where q discribes the total vorticity on the sphere,

q = ω + 2Ω cos (θ)

The first term ω is the vorticity relative to the rotat-
ing frame, and the second gives vorticity due to the
angular velocity of the sphere. Recall that the vor-
ticity is given by the Laplacian of the stream func-
tion,

ω = ∆ψ

In order to study the problem in a more tractable
framework, we restate the problem in terms of
local vortices. In this development we follow
Lim[Lim(2005a)]. The relative zonal and sectoral
flow is given by the gradient of the stream function
and will be denoted as ur and vr respectively. In
addition the flow due to rotation also contributes to
the kinetic energy, it is entirely zonal and will be
denoted as up. Thus we write

ψ = ∆−1q − ∆−12Ω cos (θ)

Note that Stokes theorem implies the total circula-
tion on the sphere is zero,

∫

S2

q = 0

However there is zero total circulation of solid body
rotation 2Ω cos (θ) thus,

∫

S2

ω = 0 (1)

We now need the kinetic energy, which will be the
Hamiltonian in our work,

H ′[q] =
1

2
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dx
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with C = ‖cos θ‖2. The zonal flow element 1
2 ‖up‖

2
2

is invariant under variation of the steam function,
and will be disregarded below.

3 The Discrete Model

In the above discussion the vorticity is a function on
S2 given by the laplacian of the stream function, we
approximate the vorticity function by a step function
constant over voronoi cells of the random lattice X.
In particular, the vorticity is approximated by,

ω(x) =
∑

i

Hi(x)si

where Hi is the indicator function for the voronoi
cell at xi. The vorticity si is assigned values ±1
which models the direction of the spin over a cell.
This has the advantage of preserving all orders of
the vorticity, as is required by the BVE[Lim(2005c)].
Thus we have this simple form for the kinetic energy
of the system,

HN = −
∑

(i,j)

J(i,j)sisj − Ω
∑

i

Fisi (9)

The usefulness of this form is clear, it closely resem-
bles the lattice models of solid state physics, and
becomes accessible to the rich theory of methods of
that field. The interaction coefficients are global and
the external field term is position dependent,

J(i,j) =

∫

S2

dwHi(w)G(Hj)(w) (10)

Fi =

∫

S2

dw cos θG(Hi)(w) (11)

The G(·) is the Laplace-Beltrami operator on the
sphere. The sum is over all lattice site pairs (x, x′).
Note that as Ω → 0 the hamiltonian becomes the
kinetic energy for the non-rotating regime. It can
also be shown [Lim(2005c)] in the N → ∞ limit,

J(xi, xj) →
16π2

N2
ln |1− xi · xj | (12)

Fi → −
2π

N
‖cosφ‖2 ψ10(xi) (13)

Notice that the energy of two sites is of three
flavors(++,- -,+ -) with only two different energies,
this forms an important simplifying observation to
the renormalization technique.

4 Bragg-Williams Approxima-

tion

The central feature of the Bragg method is the ap-
proximation of internal energy of a state by its long-
range order [Huang(1988)]. We will have to alter the



previous Bragg method, as the global order of the
system is constrained microcanonically, to estimate
internal energy from local order over domains on the
sphere. The implicit assumption in this method, as
in the original Bragg method is that the distribu-
tion of spins is homogeneous over a domain, thus, in
a domain any spin selected has equal probability of
being up. Specifically this is done by defining a par-
tition on the sphere, into domains labeled {ξ}. For
each domain ξ we define notation N+

ξ (N−

ξ ) ≡ num-
ber of sites in cell ξ which are positive(negative).
Note Nξ = N+

ξ +N−

ξ . We define for every partition
element ξ the local order parameter σξ as:

σξ = 2
N+

ξ

Nξ

− 1 (14)

The method consists of approximation of important
quantities by the probability of spin value by its
renormalized domain. Then the probability of any
spin in domain ξ to be up is P+

ξ =
1+σξ

2 , and the

probability of the spin being down is P−

ξ =
1−σξ

2 .

4.1 Statement of Equations

The notion developed above of local order leads to
a simple method of quantifying interaction types.
Specifically, pairwise interaction is dependent on
several parameters, the above interpretation lead to
derivations of equations relevant to the Hamiltonian.
Pairwise interaction occurs between all sites in three
types (ss′) = (++), (−−) and (+−), depending on
the spin of the interacting sites, we use probabilities
of spin distribution to inform probabilities of spin
interaction. We calculate the probability, labeled
P ss′

ξξ′ , associated with these types. Clearly,

P++
ξξ′ + P−−

ξξ′ + P+−

ξξ′ = 1 (15)

Which is identical to the relation

P++
ξξ′ + P−−

ξξ′ − P+−

ξξ′ = 1 − 2P+−

ξξ′ (16)

Which expressions arise below in (19) and (23),
and are the sole contribution of pairwise order to the
free energy. Thus we are content to make explicit the
order probability P+−

ξξ′ only, as follows (ξ′ 6= ξ):

Probξξ′ {+−} =
N+−

ξξ′

NξNξ′

=
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ξ

Nξ

N−

ξ′

Nξ′

+
N−

ξ

Nξ

N+
ξ′

Nξ′

=
1 + σξ

2

1 − σξ′

2
+

1 + σξ′

2

1 − σξ

2
=

1 − σξσξ′

2

Analogously we have,

Probξξ {+−} =
N+−

ξξ

1
2Nξ(Nξ − 1)

=
N+−

ξξ

1
2N

2
ξ

= 2
N+

ξ

Nξ

N−

ξ

Nξ

= 2
1 + σξ

2

1 − σξ

2
=

1 − σ2
ξ

2

For Nξ sufficiently large. Finally, we state the rela-
tion

1 − 2P+−

ξξ′ = σξσξ′

We have made this estimation based on the assump-
tion that the number of spins in any domain ξ is
sufficiently large, in fact in the thermodynamic limit
of lattice models it is standard to take the number
of spins to infinity. This must be done, however, on
the finite surface of the sphere. Therefore, we in the
limit the values Nξ approach infinity.

4.2 Estimation of Important Quanti-

ties

Internal Energy As per the above assumptions,
namely, that the distribution of cells the ratio of
distribution of positive and negative sites is homo-
geneous on a partition element, we can calculate the
expected internal energy in terms of the vector {σξ}.

〈HN 〉

=

�
−

1

2 �
ξ,ξ′

�
(x,x′)∈ξ×ξ′

J(x, x
′)sxsx′ − Ω �

ξ
�
x∈ξ

Fxsx �
= −

1

2 �
ξ,ξ′

�
�

(x,x′)∈ξ×ξ′

J(x, x
′)sxsx′ � −Ω �

k

�
�

x∈ξk

Fxsx �
The factor of 1/2 arises due to double counting
among the cells. J is the coupling constant between
sites on the lattice, but, as we are course graining, we
use only the expected coupling between sites. Thus
we define the expected coupling constant

Kξξ′ = 〈ln(1 − x · x′)|(x, x′) ∈ ξ × ξ′〉

Further, define

Lξ = −

∫

ξ

dx

Vξ

‖cosθ‖2

2
ψ10(x)

the expected coupling of a site with the external
field. Returning to the Hamiltonian, we focus on



the individual terms,

〈

∑

(x,x′)∈ξ×ξ′

J(x, x′)sxsx′

〉

(17)

= NξNξ′ 〈sxsx′〉 〈J(x, x′)|(x, x′) ∈ ξ × ξ′〉(18)

=
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P++
ξξ′ + P−−

ξξ′ − P+−

ξξ′

)

VξVξ′Kξξ′ (19)

= σξσξ′VξVξ′Kξξ′ (20)

The expected interaction of a partition element with
itself differs by a factor of 1

2 to account for double
counting.

〈

∑

(x,x′)∈ξ×ξ

J(x, x′)sxsx′

〉

(21)

=
1

2
NξNξ 〈sxsx′〉 〈J(x, x′)|(x, x′) ∈ ξ × ξ〉(22)

=
1

2
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P++
ξξ + P−−

ξξ − P+−

ξξ

)

VξVξKξξ (23)

=
1

2
σξσξ′VξVξ′Kξξ (24)

Finally, the external term becomes

〈

∑

x∈ξ

Fxsx

〉

= Nξ 〈sx|x ∈ ξ〉 〈Fx|x ∈ ξ〉

= −σξ

∫

ξ

dx
‖cosθ‖2

2
ψ10(x) = σξVξLξ

Thus we have the simple expression for the Bragg
expected energy

U = −
1

2

∑

ξ,ξ′

σξσξ′VξVξ′Kξξ − Ω
∑

ξ

σξVξLξ

Entropy It should be noted that the nature of our
model is constrained to a constant sized sphere, and
therefore no extensive quantities exist, only inten-
sive quantities. Thus the entropy is evaluated as in
intensive quantity in the standard way as a function
of {σξ}.

S = −kB

∑

ξ

Vξ

[

1 + σξ

2
ln

1 + σξ

2
+

1 − σξ

2
ln

1 − σξ

2

]

Where the Shannon estimate of entropy is used, with
entropy of variables weighted by area of domain.

The Free Energy The Helmholtz free energy is
then,

Ψ = U − TS

= −
1

2

∑

ξ,ξ′

σξσξ′VξVξ′Kξξ − Ω
∑

ξ

σξVξLξ

+TkB

∑

ξ

Vξ

[

1 + σξ

2
ln

1 + σξ

2
+

1 − σξ

2
ln

1 − σξ

2

]

Constrained to the set of σ a solution to

0 =
∑

ξ

Vξσξ (25)

The goal is to find critical points of the free energy
with respect to {σξ}. Enforcing TC=0(25), we get
a Lagrange multiplier problem. We must find the
critical points, given by the simultaneous solution of
the m equations,

λVξ







∇σ

∑

ξ

σξ







ξ

= {∇σF}ξ

= −VξΩLξ−
∑

ξ′

σξ′VξVξ′Kξξ′+TkBVξ

(

1

2
ln

1 + σξ

1 − σξ

)

Along with the constraint equation (25). Which is
equivalent to, ∀ξ

σξ = tanh



β(ΩLξ + λ) + β
∑

ξ′

σξ′Vξ′Kξ′ξ





In the continuum limit we take the number of
spins to infinity. We can as well take the number
of renormalized domains to infinity. In doing so we
get a function σ : S2 7→ [−1, 1]. We get an analogous
expression of the free energy,

Ψ [σ] = −
1

2 � dx � dyσ(x)σ(y)K(x,y)−Ω � dxσ(x)L(x)

+TkB � dx � 1 + σ(x)

2
ln

1 + σ(x)

2
+

1 − σ(x)

2
ln

1 − σ(x)

2 �
From which we can easily recover the fixed point
equation. The free energy must be extremized over
the space of functions σ : S2 7→ [−1, 1] so that
0 =

∫

S2 dxσ(x) which was the constraint enforced
by Stokes Theorem. Other physical constraints such
as bounded enstrophy are enforced by virtue of the



fixed point equation which can be derived in the con-
tinuous case similarly to the above.

σ(x) = tanh

[

β(ΩL(x) + λ) + β

∫

S2

dyσ(y)K(x, y)

]

(26)
(26) has the virtue of bounding the enstrophy point-
wise. A simple newton scheme, at λ = 0 and no
physical constraints enforced, successfully approxi-
mates the solution. The original discrete model was
limited in its degrees of freedom, we now have con-
tinuum of freedom for the spin. Further the esti-
mation of interaction became very accurate in the
continuum model. The price paid is the artifact of
the entropy estimation, however, this two degree of
freedom estimation is exactly what enables the fixed
point equation above. A graphic (figure 1) shows
the spin states of some thermodynamic regimes.
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Figure 1: Some fixed point solutions

5 Polar State Criteria

To get a rough idea of the global behavior we use the
Bragg method to approximate the long range order
of two sets on the sphere. The order of the sys-
tem varies continuously with the temperature and
ambient spin. The system therefore exhibits both
continuous and abrupt phase transitions. The sys-
tem on a non-rotating sphere has an abrupt phase
transition in negative temperature, that leads to a
critical beta. Other thermodynamic regimes also ex-
hibit continuous phase transitions. The existence of
negative temperature is demonstrated below.

We partition the sphere into the northern and
southern hemispheres. Under this configuration we
maximize the detection of interaction of sites with
the external field. In this case we have only parame-
ters σn and σs representing local order of the north-
ern and southern hemispheres respectively. Clearly
then σs = −σn from (1). This leads to equations,

σn = tanh [β(ΩL1 + λ) + βσnVn(Kn,n −Kn,s)]

−σn = tanh [−β(ΩL1 − λ) − βσnVn(Kn,n −Kn,s)]

This leads easily to the fixed point equation in one
variable

σn = tanh [βΩL1 + βσnVn(Kn,n −Kn,s)] (27)

Non-rotating The non-rotating case is given in
equation 27 by setting Ω = 0. For positive β the
RHS of 27 is decreasing while the LHS increases,
clearly, we have unique solution σ1 = 0. In the neg-
ative temperature domain β < 0 we must maximize
the free energy. The non-rotating system is given
by Ω = 0. For this case it is clear that a solu-
tion is found at σ1 = 0, corresponding to a mixed
state. Whether other fixed point exist depends on
the slope of the RHS of (27) at σ1 = 0. Graphi-
cally it is clear this situation arises when the slope
of the RHS has a slope of one, thus there is a critical
quantity βc given by βcV1(K11−K12) = 1. Thus for
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Figure 2: A graph of the fixed point when βc < β <
0,Ω = 0.

0 > β > βc = [V1(K11 −K12)]
−1 the point σ1 = 0 is

the only stationary point(see figure (2)). A check on
the concavity shows this is indeed a maximum, as
required. For β < βc < 0 we have non-zero roots of
the free energy σ− < 0, σ+ > 0, the tanh function
is odd, thus σ− = −σ+(figure (3)).
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Figure 3: A graph of the fixed point when β < βc <
0,Ω = 0.

The free energy is symmetric here so we need only
consider fixed points σ+ and σ = 0. We compare the
free energy for 0 < σ < 1 to σ = 0.

0 < Ψ(σ) − Ψ(0) (28)

= (K12 −K11)σ
2 + T∆S (29)

Where

∆S = kB2π [(1 + σ) ln(1 + σ) + (1 − σ) ln(1 − σ)]

We therefore have a polarized state for β < βc.

Rotating In positive temperature for Ω > 0, the
RHS has zero at ΩL1

K12−K11

, thus there is a solution
σ̄1 < 0 (see figure 4).
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Figure 4: A graph of the fixed point when β,Ω > 0.

In negative temperature, we note ∃βΩ
c so that β <

βΩ
c < 0 implies the existence of three fixed points

(see figure 5) in the case Ω < V1(K11−K12)
L1

= Ωc.
Otherwise there is only one fixed point (see figure
6), indicating a super - rotational state.

In the low absolute valued negative temperature
regime, we easily find that the negative fixed points
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Figure 5: A graph of the fixed point when βΩ
c < β <

0,Ωc > Ω > 0.

σ−

1 , σ̂
−

1 < 0 are lower in absolute value than the pos-
itive fixed point σ+

1 > 0, i.e.
∣

∣σ−

1

∣

∣ ,
∣

∣σ̂−

1

∣

∣ <
∣

∣σ+
1

∣

∣.
In physical terms this implies that the ordered state
σ+

1 > 0 (in which positive vorticity dominates the
northern hemisphere), is ‘more ordered’ than the al-
ternatives σ−

1 or σ̂−

1 . The demonstration of this fol-
lows. In the thermal setting under consideration,
i.e. Ω > 0, β < βΩ

c < 0, the RHS of equation (27)
has a zero at σo < 0. Negative solutions are at
σ− = σo − εi where εi > 0, i = 1, 2. Denote T as
the operator on the RHS of (27), acting on σ, then
σo − εi = T (σo − εi). But tanh is an odd function so

T (σo + εi) = −σo + εi > σo + εi

Tanh is also an increasing function which implies,

T (−σo + εi) > −σo + εi

However, T (1) < 1, finally the continuity of tanh im-
plies σ+ ∈ [−σo+εi, 1]. The preference of free energy
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Figure 6: A graph of the fixed point when β < βΩ
c <

0,Ωc > Ω > 0.



for the σ+ state is then entirely due to the internal
energy which prefers the super-rotational state. The
sub-rotational state is preferred by entrophy; lesser,
however, than the internal energy preference. We
thereby gain the main results of the paper, namely,
a simple analytic equation which gives the contri-
bution of the first spherical harmonic to the stream
function in any thermodynamic regime. The contri-
bution of the first spherical harmonic being signifi-
cant as it forms the only contribution to zonal angu-
lar momentum, which is the observed super-rotation
phenomena we intended to describe.

6 Validity

Of the Continuous Limit As noted above, the
model does not have an extensive limit from which
we can derive intensive quantities. We have there-
fore bypassed the standard thermodynamic con-
struction and directly built an intensive model. Con-
vergence theorems support our continuum model. It
is thus clear that the continuum model is consistent
with the discrete model.

In order to create a continuous function of renor-
malized vorticity in our theoretical framework. We
construct a sequence of lattice ensembles, the kth
ensemble being of N(k) lattice nodes. The renor-
malized domains at the kth step can also be defined
by a random lattice, of M(k) sites and containing all
the spins sites in its voronoi cell. These quantities
both approach infinity in the k → ∞ limit, however,
they will scale like, N(k) = M(k)2. We are thus jus-
tified in considering σ to take on values continuously
in [-1,1].

By the construction of the family of spin lat-
tice and domains, we can consider sequences of de-
creasing sets in considering the interaction term in
the Hamiltonian. Specifically, any point p on the
sphere is contained in a domain Pk of the formu-
lation at step k. Clearly, the sequence decreases
Pk+1 ⊂ Pk ∀k. It can be seen from (10) that the
self interaction of the domains is negligible in the
limit. For two points p and q on the sphere there is
k so that, p ∈ Pk and q ∈ Qk and Pk 6= Qk.

We can thereby define the renormalized vorticity
as a function on S2 at the kth lattice as

σk(x) =
∑

ξ

Hξ(x)σ
k
ξ

then from the dominated convergence theorem we

have that points converging in state space have con-
verging Helmholtz free energy.

6.1 Temperature

It is well known that systems of vortices often have
negative temperature. Indeed our model has neg-
ative temperature in both the rotating and non-
rotating regimes. The existence of negative tempera-
ture can be seen by the following. Suppose we divide
the sphere into northern and southern hemispheres,
and further partition those intoN1, N2 and S1, S2 re-
spectively; in such a way that these sets are symmet-
ric about the equator. This assumption simplifies
the algebra, as we have some identities VN1

= VS1

etc. Now let the order of these sets be given by
σN1

= 1, σS1
= −1, σN2

= γ and σN2
= −γ. We

can write the energy and entropy in terms of these
quantities,

U = −V 2
N1
KN1N1

− γ2V 2
N2
KN2N2

−γ2VN1
VN2

KN1N2
VN1

VS1
KN1S1

+ γ2VN2
VS2

KN2S2

+γVN1
VS2

KN1S2

+γVN2
VS1

KN2S1
− Ω(2VN1

LN1
+ γVN2

LN2
)

S = −kBVN2

[

(1 + γ) ln
1 + γ

2
+ (1 − γ) ln

1 − γ

2

]

Now from the Mean Value Theorem we have that
there exists some temperature T0 such that

1

T0
=

∆S

∆U
(30)

Thus if we consider the secant from γ 6= 0 to γ = 0
we find ∆U and ∆S become

∆S = 2kBVN2
ln 2

∆U = γ2V 2
N2

(KN1N1
−KN2N2

)

+γVN1
VS2

(KN1N2
−KN1S2

−KN2S1
) + γ2ΩVN2

LN2

Inspecting the denominator of the RHS of 30, it is
clear at γ = 1 we get negative temperatures. On the
other hand, if we set γ = −1, then the denomina-
tor becomes a sum of positive and negative terms.
But, on taking VN1

1
n

we find that the negative term
approaches zero as

γ2V 2
N2

(KN1N1
−KN2N2

) ≈ −
lnn

n2

The positive terms, however, approach zero as 1
n

which gives us a positive temperature.



7 Conclusion

The results are in good agreement with those
found through Monte Carlo Analysis by Ding and
Lim[Ding and Lim(2006)] in a paper appearing in
this conference. The complement to this technique,
using probabilities of spin interactions to inform
spin distribution is the implementation of the Bethe-
Peierls approximation on this model, and remains to
be attempted.
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