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1. INTRODUCTION*

 Anthropogenic heating is an important but 
often ignored component of the urban energy 
budget, with potentially significant ramifications for 
modeling urban climate and air quality. Diurnal 
profiles of anthropogenic heating are not 
commonly available, however, making it difficult to 
account for anthropogenic heat release in 
analyses of the urban environment. To address 
the growing need for such profiles we have 
applied a published top-down methodology to 
develop representative month-specific 
anthropogenic heating profiles for 61 large US 
cities. The method is “top-down” in that it uses 
suitably downscaled coarse spatial and temporal 
resolution data to estimate diurnal profiles for 
cities. These data have been obtained from the 
Bureau of Transportation Statistics (US 
Department of Transportation), the Energy 
Information Administration (US Department of 
Energy), the National Climatic Data Center (US 
Department of Commerce), and the Urban 
Transportation Planning Package (US Census). 
For each urban area we have calculated diurnal 
profiles for two spatial scales - city scale, and 
greater metropolitan area. Details of all profiles will 
be made available on our website 
(www.fuse.pdx.edu). For presentation purposes, 
however, we will summarize only the city-scale 
results here. 

2. OVERVIEW OF METHODOLOGY 
 There are two fundamental approaches to 
estimating diurnal profiles of anthropogenic 
heating. Starting at the neighborhood scale one 
approach is to monitor energy consumption of 
individual buildings and to use roadway traffic 
count data to assess heat released from 
neighborhood traffic. Such a bottom-up approach 
is tedious, particularly if the goal is to develop 
detailed profiles for an entire city. The other 
approach is to start with coarser resolution data – 
in time and space – and scale as needed to 
estimate anthropogenic heating profiles at finer 
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scales. This latter approach is particularly useful 
for the present work where the goal is to produce 
detailed anthropogenic heating profiles for many 
cities using a standardized approach.  
 The actual method used in this study to create 
anthropogenic heating profiles is based on the 
work published in (Sailor and Lu, 2004). A 
summary of this approach is presented here for 
reference. As a starting point anthropogenic 
heating is divided into three components 
representing the major sources of waste heat in 
the urban environment: 
   MBV QQQQf ++=               (1) 
where the subscripts are for vehicles (V), building 
sector (B), and human metabolism (M). The 
building sector can be further divided into heat 
rejected directly from electricity consumption and 
heat released from point-of-use heating fuels such 
as natural gas and fuel oil.  
 Each component of the anthropogenic heating 
profile is based on a population density 
formulation. That is we first calculate per capita 
energy intensity for the city and sector and then 
multiply this value by the population density. While 
urban populations generally swell during the day, 
most readily-available population data are for the 
resident population which represents the nocturnal 
population. Analyses of detailed population data 
from the US Census (BTS, 2003) suggest that the 
daytime urban population is typically 50 to 100% 
higher than the resident population. In the present 
study a simple 75% daytime increase factor was 
assumed for city-scale analyses and all population 
data were obtained directly from the resident 
population data available from the US census. At 
the larger metropolitan scale the daytime increase 
in population is much smaller and assumed 
negligible in this work. The population data were 
then used with per capita data for electricity, 
heating fuels, and transportation fuel use. 
 One enhancement in the present work relative 
to the original paper (Sailor and Lu, 2004) is that 
we now correct for variations in weather from the 
state-level to the city-scale. Specifically, the 
original method mapped monthly state-level 
energy consumption data to the city scale simply 
by multiplying by the appropriate population ratio. 
This approach ignored the fact that intra-state 
climate variability leads to differences in per capita 



energy consumption rates for different cities within 
any particular state. While city-scale energy data 
are not commonly available we have found a 
simple method for scaling state-level consumption 
data that reflects the weather-dependency of utility 
loads. Specifically we employed a method 
whereby regression models relating state-level 
degree days to state-level published consumption 
data are applied using the corresponding city-level 
degree day data (Sailor and Vasireddy, 2005). 
This approach has been shown to significantly 
reduce the error associated with the assumption 
that per capita energy consumption is constant 
within any state. 

3.  DATA RESOURCES 
 The goal of this study was to apply a 
standardized modeling technique in an automated 
way to as many US cities as possible. The 
availability of data ultimately limited the selection 
of available cities to 61 of the largest US cities. 
The selected cities, resident population density 
data (persons per square meter), and daily vehicle 
distance estimates are given in Table 1. This table 
also presents a summary of the maximum hourly 
winter and summer values of anthropogenic 
heating as described later in this paper. 

3.1 Weather Data 
 The National Climatic Data Center maintains 
climate normal and actual weather data needed 
for incorporating weather sensitivity into the 
mapping of state level energy data to the city 
scale. Specifically, we used population-weighted 
state values of monthly cooling and heating 
degree days (NCDC, 2004a; NCDC, 2004b). For 
the city-level degree day data we accessed the 
station normals database (NCDC, 2001). These 
data were downloaded by year from 
www.cpc.ncep.noaa.gov in a preliminary form. 
This database allows evaluation of monthly 
deviations from the monthly normals of heating 
and cooling degree days. From these resources 
we extracted the year 2000 specific monthly 
heating and cooling degree days for all cities and 
states involved in our analysis. 

3.2 Metabolism Data 
 In prior work (Sailor et al., 2003) we found that 
metabolism is generally a very small component (~ 
2-3%) of the total anthropogenic heating profile. 
Nevertheless it is readily incorporated in our 
population density-based methodology. 
Specifically, the typical US diet consists of 2000 to 
2500 kCal daily. Using a representative diet of 

2400 kCal and assumed nocturnal and daytime 
metabolic rates of 70 and 140 Watts, respectively 
(with a suitable 2-hour linear transition in morning 
and evening hours) we constructed metabolism 
profiles for each city. 
 
 
Table 1. Cities used in the anthropogenic heating 
database project.  
 

Winter Summer
Albuquerque NM 9.6E-04 46 12.1 8.9
Anchorage AK 5.9E-05 29 0.7 0.5
Atlanta GA 1.2E-03 54 18.6 13.2
Austin TX 1.0E-03 50 11.6 11.2
Bakersfield CA 8.4E-04 29 6.2 6.0
Baltimore MD 3.1E-03 34 36.6 24.7
Birmingham AL 6.3E-04 56 8.3 7.4
Boston MA 4.7E-03 33 47.5 31.7
Buffalo NY 2.8E-03 31 30.4 20.9
Charlotte NC 8.6E-04 48 10.2 8.6
Chicago IL 4.9E-03 33 76.8 37.6
Cincinnati OH 1.6E-03 45 26.0 15.8
Cleveland OH 2.4E-03 34 36.7 20.6
Colorado Springs CO 7.5E-04 29 8.1 5.3
Columbus OH 1.3E-03 42 20.8 12.4
Corpus Christi TX 6.9E-04 40 8.3 6.9
Dallas TX 1.3E-03 50 16.2 14.8
Denver CO 1.4E-03 36 15.8 10.9
Detroit MI 2.6E-03 39 39.3 22.5
El Paso TX 8.7E-04 30 8.7 7.5
Fort Worth TX 7.1E-04 50 8.6 7.8
Fresno CA 1.6E-03 34 13.0 11.7
Houston TX 1.3E-03 59 16.1 15.4
Indianapolis IN 8.4E-04 52 14.2 9.1
Jacksonville FL 3.7E-04 46 3.2 3.3
Kansas City MS 5.4E-04 47 8.7 5.5
Las Vegas NV 1.6E-03 31 17.7 16.0
Lexington-Fayette KY 3.5E-04 48 5.9 3.7
Los Angeles CA 3.0E-03 37 22.6 21.5
Louisville KY 1.6E-03 45 25.9 16.1
Memphis TN 9.0E-04 40 10.8 8.8
Miami FL 3.9E-03 31 25.5 28.5
Milwaukee WI 2.4E-03 33 34.4 18.5
Minneapolis MN 2.7E-03 39 41.6 23.8
Nashville-Davidson TN 4.4E-04 61 6.7 5.2
New Orleans LA 1.0E-03 23 9.1 8.6
New York NY 1.0E-02 25 96.3 69.4
Oakland CA 2.8E-03 36 21.6 19.4
Oklahoma City OK 3.2E-04 39 4.0 3.0
Omaha NE 1.3E-03 30 21.1 11.8
Philadelphia PA 4.3E-03 30 50.4 30.4
Phoenix AZ 1.1E-03 44 9.2 10.3
Pittsburgh PA 2.3E-03 37 30.1 18.5
Portland OR 1.5E-03 38 17.9 12.4
Raleigh NC 9.3E-04 49 11.2 9.4
Riverside CA 1.3E-03 39 9.8 10.0
Sacramento CA 1.6E-03 34 13.5 11.4
Salt Lake City UT 6.4E-04 40 8.8 5.3
San Antonio TX 1.1E-03 47 12.1 11.7
San Diego CA 1.5E-03 38 10.9 10.6
San Francisco CA 6.4E-03 36 52.0 44.7
San Jose CA 2.0E-03 38 16.2 14.2
Seattle WA 2.6E-03 42 33.3 23.7
St. Louis MO 2.2E-03 46 33.1 22.0
Stockton CA 1.7E-03 30 13.7 11.7
Tampa FL 1.0E-03 37 7.6 8.2
Toledo OH 1.5E-03 38 24.4 13.7
Tucson AZ 9.7E-04 35 7.5 7.8
Tulsa OK 8.3E-04 36 10.1 7.7
Washington DC 3.6E-03 37 57.6 42.2
Wichita KS 9.8E-04 34 14.1 8.8

Maximum Hourly Qf (W/m^2)City State PopDens 
(per sq. m) DVD (km/day)

 

3.3 Electricity Data 
 Utilities within the United States are required 
to report monthly totals of consumption of 
electricity (and other fuels) aggregated at the state 
level. These sector-specific data are archived by 

http://www.cpc.ncep.noaa.gov/


the US Department of Energy’s Energy 
Information Administration (EIA, 2003; EIA, 2003). 
For each state in our analysis these monthly 
consumption data were obtained, converted to 
daily per capita consumption, and then scaled to 
reflect weather-related differences at the city 
scale. These data provide a sense of the daily per 
capita magnitude of electricity consumption (EDPC), 
but do not provide detail regarding the diurnal 
variability of this usage. In order to develop such a 
diurnal profile, we assumed that the hourly 
electricity consumption (EBE) for any city can be 
written as , where  )(DPC hourfEEBE ⋅=

             (2) 0.1)(
24

1
=∑ hourf

In prior work (Sailor and Lu, 2004) we obtained 
hourly load profile data from a number of 
independent service operators (ISO). After 
suitable non-dimensionalization of the profiles we 
found that load profiles could be represented 
reasonably well with two “standard” profiles – one 
for summer, and one for winter.  

3.4 Heating Fuel Data 
 The EIA also collects and archives state 
monthly usage totals for various heating fuels 
(e.g., natural gas, LPG, kerosene, fuel oil). While 
natural gas (NG) is the dominant heating fuel in 
the US the contribution by other heating fuels to 
the total anthropogenic heating profile cannot be 
neglected. The fraction of total heating fuel 
demand met by natural gas (FNG) is in the range of 
0.50 to 0.90, depending upon the state and sector. 
The approach taken here was to scale the NG 
profiles by FNG to estimate total heating fuel 
profiles.  
 While data for hourly electricity consumption 
rates are relatively easy to obtain (for ISO service 
areas) the required data to generate the 
corresponding diurnal profiles for heating fuels are 
not typically available. Due to this lack of data we 
opted to neglect the diurnal variability of heating 
fuel consumption in the present analysis. It is 
believed that this causes relatively little error in the 
summertime profiles, but may have the unintended 
result of lowering the midmorning peak in 
anthropogenic heating for winter months.  

3.5 Transportation Data 
 Estimation of heat released from vehicles 
requires detailed hourly profiles of traffic on major 
and minor roadways throughout a metropolitan 
area. It is also desirable to have detailed fleet 

information, including an estimate of the fleet-
averaged hourly speed and fuel economy. In past 
work we had simply estimated that fleet-averaged 
fuel economy was 20 miles per gallon (~ 8.5 
km/liter). We have since updated this estimate to 
24.4 mpg (10.4 km/liter) to reflect published 
estimates from the U.S. EPA 
(www.fueleconomy.gov).  
 The U.S. Department of Transportation 
publishes annual summaries of Daily Vehicle Miles 
Traveled (DVMT) for major urbanized areas 
(USDoT, 2003). These data are readily available 
for 69 US cities with populations greater than 
500,000. We subsequently converted these data 
to per capita daily vehicle distance (DVD) in units 
of km/person. It is generally reasonable to assume 
that per capita vehicle distance traveled has little 
seasonal variation (Hallenbeck et al., 1997). The 
hourly profile for vehicle emissions can be 
estimated using hourly traffic data, where traffic 
counts are suitably converted to fractions of daily 
traffic occurring within each hour. Given the 
similarity among such profiles, we simply use the 
national profile created by Hallenbeck. 
 With the hourly fractional traffic profiles (Ft) 
defined above, and the values for per capita daily 
vehicle distance (DVD) one can calculate the total 
anthropogenic heat release in any hour from 
vehicles by: 
 
 ( ) EVhhFDVDhQ poptV ⋅⋅⋅= )()( ρ   ,            (3) 

where ρpop(h) is the hourly population density and 
EV is the energy release per vehicle per meter of 
travel, given by: 

   
FE

NHC
EV fuelρ⋅

=   ,            (4) 

where NHC is the net heat of combustion of 
gasoline (J kg-1), ρfuel is the fuel density (kg l-1), 
and FE is the mean fuel economy (km l-1).  If one 
assumes a mean fuel economy of 10.4 km per liter 
(~24.4 miles per gallon), typical heat of 
combustion of 45x106 J kg-1 , and a nominal fuel 
density of 0.75 kg l-1 , EV takes on a value of 3258 
J m-1 of vehicle travel. If detailed fleet fuel 
economy data are available for a particular 
application, that data could be substituted into the 
above equation to get a better estimate of EV.  

4. RESULTS 
 The anthropogenic heating database project 
for US cities represents a compromise between 
detail and breadth of analysis. In order to facilitate 
the application of the methodology we 
implemented it using a spreadsheet approach that 



allowed for automation of the data input and 
manipulation processes. The result is a series of 
spreadsheets with city names in the first column, 
state names in the second column, and 
corresponding population, area, traffic, and energy 
consumption data in the remaining columns. A 
final set of twelve monthly spreadsheets was 
compiled from these data. These spreadsheets 
provide hourly anthropogenic heating estimates for 
each of the 61 cities. Thus a total of 732 distinct 
anthropogenic heating profiles have been 
developed. It was immediately recognized that this 
is far too much data to effectively communicate in 
a presentation or paper. So, for presentation 
purposes, we nominally divide the 61 cities into 
two climate types – cold climate and warm climate 
cities.  
 There are two additional modes of accessing 
the results of this research. Any investigator 
interested in detailed monthly profiles for one of 
the 61 cities in this study (listed in Table 1) can 
find these profiles at our website 
(www.fuse.pdx.edu). Investigators interested in 
estimating anthropogenic heating profiles for cities 
not represented in this list of cities can apply the 
regression formulae presented in section 4.1, but 
should carefully consider the caveats contained 
therein. 
 As illustrated in Table 1 the vast majority of 
the cities analyzed had anthropogenic heating 
profiles that peak in winter. In fact, only 6 cities in 
the states of Florida, California, and Arizona had 
summer profiles that were larger than their 
corresponding winter profiles. In comparing 
anthropogenic heating profiles, however, it was 
generally found that summertime anthropogenic 
heating profiles have a common shape regardless 
of the underlying climate. Wintertime profiles, 
however, show more dependence on climate 
region. These effects are illustrated in Fig. 1 which 
presents a non-dimensional anthropogenic heating 
profile for 2 representative warm climate cities 
(Miami FL and Phoenix AZ) and 2 colder climate 
cities (Chicago IL and Milwaukee WI). This non-
dimensionalization is accomplished by dividing the 
hourly profile values by the maximum value for 
that city. The individual magnitudes of these 
profiles vary substantially – Chicago has a peak of 
37.6 W/m2 while the peak in Phoenix is just about 
10 W/m2. The non-dimensional summer profiles, 
however, vary by less than 2% for the majority of 
the cities. 
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Figure 1. Non dimensional summer anthropogenic 
heating profiles for a representative sample of cold 
and warm climate cities. 
 
Anthropogenic heating profiles in winter show 
more variability depending upon the local climate. 
As shown by the non-dimensional profiles in Fig. 2 
cold climate cities have relatively higher nocturnal 
heating, a larger morning peak, and less variability 
during the day. 
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Figure 2. Non dimensional winter anthropogenic 
heating profiles for a representative sample of cold 
and warm climate cities. 
 
 Results for the 4 cities with the largest winter 
anthropogenic heating profiles are illustrated in 
Fig. 3. New York tops the list with a peak 
magnitude of about 94 W/m2. It is important to 
note that these profiles are all at the city-scale. As 
one focuses in at finer resolutions, say the census 
tract within the central business district it is 
reasonable to expect that the local magnitude may 
increase by a factor of 10 to 20, but that at the 
same time the vertical height over which this heat 
is released increases according to building heights 

http://www.fuse.pdx.edu/


(Sailor and Lu, 2004). Likewise, as the scale of 
analysis becomes coarser the magnitude of the 
anthropogenic heating diminishes. We found that 
magnitudes at the city scale are typically a factor 
of 10 to 20 larger than those at the metropolitan 
scale (average factor for the 61 cities studied here 
was ~17). This is a direct consequence of the 
higher population densities at the city scale. 
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Figure 3. January profiles for the US cities with 
the largest anthropogenic heating magnitudes. 
 
 It is also instructive to consider the relative 
contribution that each component makes to the 
total anthropogenic heating profile. To address this 
point within a limited space we have calculated the 
relative contribution of vehicles, electricity, heating 
fuels, and metabolism to the monthly profile for 
each city. Fig. 4 presents a summary histogram of 
the average contributions over all 61 cities in the 
study. As one might expect the contribution from 
metabolism is small and relatively steady ranging 
from about 3% in months with little space 
conditioning demand down to about 2% for 
months where space conditioning loads are 
significant. Vehicles represent the dominant 
component of the heating profile regardless of 
month ranging from about 38% of the total in 
winter to about 50% of the total profile in summer. 
Overall, electricity plays a slightly more important 
role than heating fuels with heating fuels being 
more important in winter (November-March) and 
electricity being more important in the remaining 
months. 
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Figure 4. Relative contribution of each component 
to anthropogenic heating – averaged over all 
cities. 

4.1 Estimation Process for Other Cities 
 In order to automate the profile generation 
process we restricted ourselves to analysis of 
cities for which the necessary data were readily 
available. Given that the method relies heavily on 
a population density formulation and is clearly 
climate-dependent, it is reasonable to consider the 
prospect of developing a multiple parameter 
regression model to estimate the profiles. Once 
such a model is developed it can then be applied 
to any city not previously modeled. Before 
proceeding, however, it is important to note that 
this process is inherently tied to the underlying 
energy intensity of the US economy.  
 The results from the 732 individual 
anthropogenic heating profiles were analyzed to 
develop a regression model that relies on monthly 
values of heating and cooling degree days and 
representative values of population density and 
mean daily vehicle distance traveled per capita. 
Due to the complexity of the profiles it was 
decided that each hourly value for a month 
specific profile would be determined from an 
independent regression relationship. Hence, the 
model takes the form: 
 
Qfhr=  β0+HDD*β1+CDD*β2 
  +PopDens *β3+DVD*β4                     (5) 
 
where the subscript hr refers to the hour of the 
day, both degree day variables are monthly totals 
in °C-days, based on a threshold temperature of 



18.3 °C, PopDens is persons per square meter 
and DVD is daily vehicle distance traveled per 
person in units of km/day. The values for the 
regression coefficients are given in Table 2 along 
with Root Mean Square Error (RMSE) and R2 
values. 
 
Table 2. Coefficients for regressions (eqn. 5) 
through hourly anthropogenic heating results for 
all 61 cities over 12 months. 
 
Hour β0 β1 β2 β3 β4 RMSE R2

1 -3.515 0.013 0.008 2751 0.028 1.93 0.87
2 -3.366 0.013 0.008 2598 0.024 1.92 0.87
3 -3.347 0.013 0.008 2542 0.022 1.91 0.86
4 -3.341 0.013 0.008 2518 0.022 1.92 0.86
5 -3.378 0.013 0.007 2591 0.024 1.92 0.86
6 -3.771 0.013 0.007 3053 0.038 1.95 0.89
7 -5.461 0.016 0.009 4795 0.076 2.55 0.92
8 -7.391 0.020 0.011 6867 0.124 3.20 0.94
9 -8.124 0.023 0.013 7500 0.126 3.69 0.95

10 -7.662 0.023 0.014 6997 0.108 3.64 0.92
11 -7.598 0.023 0.014 6973 0.107 3.63 0.92
12 -7.751 0.022 0.014 7194 0.113 3.65 0.92
13 -7.968 0.022 0.014 7486 0.122 3.67 0.93
14 -7.927 0.022 0.015 7458 0.121 3.66 0.93
15 -8.125 0.022 0.014 7711 0.129 3.67 0.93
16 -8.453 0.022 0.014 8120 0.142 3.72 0.93
17 -7.474 0.019 0.012 7232 0.130 3.24 0.93
18 -6.432 0.016 0.010 6259 0.116 2.76 0.93
19 -4.840 0.013 0.008 4612 0.080 2.17 0.93
20 -4.448 0.013 0.008 4119 0.065 2.11 0.92
21 -4.231 0.013 0.008 3852 0.056 2.08 0.92
22 -4.121 0.013 0.008 3674 0.052 2.04 0.91
23 -3.961 0.013 0.008 3413 0.046 2.00 0.90
24 -3.737 0.013 0.008 3068 0.037 1.96 0.90  

 

4.2 Non-US City Extrapolation 
 It should be noted that the value of Qfhr arrived 
at through application of eqn. (5) and Table 2 may 
significantly overestimate anthropogenic heating in 
cities within other countries where differences in 
infrastructure, end-use efficiency, and 
demographics result in lower per capita 
consumption rates.  
 What is needed is a correction factor that 
modifies results of eqn. (5) to account for the fact 
that individuals in a non US city would consume 
energy at a different rate than their US 
counterparts if exposed to identical weather 
conditions. 
 As a first order correction we can compare the 
ratio of per capita energy consumption in the 
target country to that in the US. The most readily 
available data for this purpose are raw energy 
consumption totals that can be converted to 
equivalent barrels of oil use per person and then 
non-dimensionalized by dividing by the US 

consumption rate. Sample values for fec are given 
in Table 3. If this ratio represents a suitable 
correction factor it could be applied as a 
straightforward multiplier to the value of Qf 
obtained from eqn. 5: 
 
  Qfhr (non-US) = fec * Qfhr                (6) 
 
 
Table 3.  Per capita annual energy consumption 
ratios of various countries relative to that of the US 
(source: IEA, 2001). 

 
Country Relative Energy 

Consumption Rates 
 fec (see eqn. 6) 

Australia 0.68 
Canada 0.98 
Denmark 0.44 
France 0.51 
Germany 0.49 
Italy 0.36 
Japan 0.49 
Sweden 0.68 
United Kingdom 0.47 
United States 1.00 
 
Unfortunately this approach is only accurate if the 
underlying climates are similar. As an example, 
consider the relative energy consumption rate for 
Canada. According to Table 3 Canadians use 98% 
as much energy per capita as their US 
counterparts. While this is true, it must be noted 
that this similarity in consumption rates is despite 
the fact that Canada as a whole experiences much 
colder winters than does the US. If the US 
infrastructure and people were suddenly 
transplanted into the Canadian climate it is likely 
that they would consume much more energy than 
their Canadian counterparts. Thus, a better 
correction scheme would also employ a weather 
standardization. In other words the correction 
factor in eqn. (6) should really represent the 
energy per capita that would be consumed in the 
target country if that country were exposed to US 
weather conditions. So, in cases of countries in 
mild climates the use of Table 3 is likely to 
overcorrect – and underestimate Qf. In cases of 
countries in harsher climates – either subject to 
intense summer heat, or extreme cold in winter 
Table 3 will likely undercorrect – and overestimate 
Qf. 

5. CONCLUSIONS 
 The anthropogenic heating database 
developed here represents a valuable tool for 



urban climate modelers. With the growing use of 
anthropogenic heating as a source term in the 
energy budget of urban climate models (Khan and 
Simpson, 2001; Sailor and Fan, 2004), there is an 
urgent need for easily accessible estimates of 
anthropogenic heating for large cities around the 
world. At the same time it must be cautioned that 
the profiles developed here rely on a number of 
assumptions that limit their accuracy and general 
applicability. Chief among these limitations are (1) 
the lack of differentiation between workdays and 
non-workdays; (2) lack of spatial differentiation of 
the profiles; and (3) inaccuracies in the diurnal 
profile specifications for electricity and heating fuel 
consumption. The first limitation is relatively easily 
addressed through detailed analysis of traffic and 
energy consumption data.  The second limitation – 
that of spatial differentiation can be addressed 
with readily available census data (as was done in 
Sailor and Fan, (2004)). Of course, this requires 
significantly more effort and city-specific analysis. 
The lack of city-specific detailed energy profiles is 
believed to introduce relatively little error in the 
summer. This is due in part to the fact that the 
electricity consumption profiles have been shown 
to be relatively similar across the country 
(Hallenbeck et al., 1997), and the fact that heating 
fuel consumption is lower in the summer and 
relatively less sensitive to temperature variations. 
In the winter, however, heating fuel consumption is 
highly dependent upon temperatures and may be 
expected to exhibit larger diurnal variation. In 
Sailor and Lu, (2004) we estimated this diurnal 
variability in winter using logarithmic models 
relating heating fuel consumption to temperature. 
The models were developed using monthly data, 
but applied to diurnal variations in temperature. 
While this approach has its place, it introduces 
significant uncertainty that is not easily estimated 
due to the lack of detailed data. We are currently 
addressing this issue through a bottom-up 
analysis approach in which we model hourly 
energy consumption of a representative suite of 
prototypical commercial and residential buildings. 
This analysis may lead to more realistic diurnal 
profiles of heating fuel consumption that can be 
applied in the automated approach used for the 
anthropogenic heating database project. 
 It is also important to note that at the present 
time the correction algorithm suggested by eqn. 
(6) for cities outside the US is preliminary and has 
not been validated. Nevertheless, it represents a 
reasonable method for scaling initial estimates of 
anthropogenic heating and hence makes the 
results of the anthropogenic heating database 
project widely applicable to cities around the 

world. At the present time a simplified software 
tool is being developed to allow researchers to 
implement the results of this study for any city of 
interest. This tool will be made available along with 
the detailed anthropogenic heating database 
spreadsheet results at the authors’ web site 
(www.fuse.pdx.edu). 
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