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COMPARISON OF TWO TRANSPORT DESCRIPTORS
WITHIN A HYBRID RECEPTOR MODELING SYSTEM

John M. Shuford1, John G. Eoll, Stephanie L. Seely, William G. Moore & Joseph G. Dreher
ENSCO Inc., Melbourne, FL

1. INTRODUCTION

ENSCO, Inc. is developing systems for imputing
source locations using transport and dispersion model-
ing in combination with sample records of pollutant con-
centrations. These data are analyzed within the general
framework commonly referred to as hybrid receptor mod-
eling in which a statistic (an estimate of conditional prob-
ability) is calculated for each grid square based on the
relative strength of association between the passage of
air parcels over that grid square and the arrivals of those
air parcels at the receptor during times of elevated pollut-
ant concentrations.

Conditional probability surfaces can be estimated
using both forward and backward descriptors of trans-
port. In both approaches, we use a statistical bootstrap-
ping algorithm to obtain confidence intervals on the
conditional probability estimates. In the forward-transport
approach, the conditional probability field is estimated
from simulated airborne concentrations at a receptor
arising from hypothetical plumes arriving from each point
of a grid of hypothetical sources. The simulated airborne
concentrations are produced by the transport and disper-
sion model SLAM (Kienzle 1989), which is a Lagrangian
Gaussian-puff and trajectory model that can ingest a
wide variety of meteorological data and formats. In the
backward modeling approach, the conditional probabili-
ties are estimated from frequency counts of backward-
trajectory segment endpoints in the various cells of the
grid. When used with backwards trajectories, it is similar
to Hopke’s PSCF model used with bootstrapping (Hopke
et al., 1995).

We have used the new model in both modes to ana-
lyze airborne concentration and trajectory data over the
Southwestern United States using data from a project
which investigated sources of haze in Grand Canyon
National Park during the mid-to-late 1980’s. Our results
are compared and contrasted with previously published
results.

2. BACKGROUND

As a convenient and interesting test case for
observing and comparing the results obtained using
backward- and forward-trajectory frameworks for hybrid
receptor modeling, we have chosen to analyze data from

the Subregional Cooperative, Electrical Industry, Depart-
ment of Defense, National Park Service and EPA Study
(SCENES) on visibility around the Grand Canyon. That
study was conducted during a period spanning 1983 to
1989. One of several objectives of the SCENES study
was to identify potential pollution sources in the U.S.
Southwest that might be contributing significantly to haze
levels at Grand Canyon National Park.

We have not attempted to perform a comprehensive
analysis of the data from SCENES; rather, we have
focused merely on applying hybrid receptor models to a
set of PM2.5 measurements of air filtration samples col-
lected at Hopi Point, Arizona, an observation point
located on the South Rim of the Grand Canyon
(36˚04'N-112˚09'W, 2,150 MSL). Thorough analyses of
these data have been previously published (Vasconce-
los, Macias, & White, 1994; Vasconcelos, Kahl, Liu,
Macias, & White, 1996; Vasconcelos, 1999) and we refer
the reader to those references for more detailed descrip-
tion of the experimental protocols and data. Indeed, a
significant factor in our decision to analyze these data
was the fact that the Vasconcelos, et al papers provided
an authoritative baseline to which we could compare our
results.

3. MATERIALS AND METHODS

3.1. Transport Descriptors and Adopted Grid

The original study, summarized by Vasconcelos
(1999), used the Air Resources Laboratories Atmo-
spheric Transport and Dispersion (ARL-ATAD) model to
estimate 72-h back trajectories arriving at the Hopi Point,
Arizona receptor site. Input to the ARL-ATAD model con-
sisted of National Weather Service and U. S. Air Force
rawinsonde observations data to produce the 72-h back-
wards trajectories. Our analysis used the Trajectory
CALculation (TCAL) model, which is a single-layer,
Gaussian puff transport-dispersion model. Where ATAD
determined the depth of the transport layer using tem-
perature and pressure profiles at rawinsonde stations
within 560 km., TCAL used two predefined mixed layer
depths for nighttime and daytime transport (500 m and
1500 m, respectively). Input to TCAL consisted of
archived hourly surface and twice daily rawinsonde
observations. Unlike Vasconcelos (1999), we did not
have any access to special surface and/or rawinsonde
observations surrounding GCNP; however, global grid-
ded NCEP/NCAR reanalysis fields were used as input to
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TCAL (2.5˚ x 2.5˚; Kalnay et al. 1996). Simulations were
performed for the period July 1984 to September 1989.
Both TCAL and ARL-ATAD calculate two-dimensional
advection using horizontal winds averaged throughout
the mixed layer to obtain the estimated position of an air
parcel at regular intervals (hourly for TCAL, 3-hourly for
ATAD) throughout the 72 hours until its arrival at a recep-
tor location. We did not attempt to exclude backwards
trajectories that ended prematurely because of missing
data, or those that contained endpoints outside the study
domain.

To produce the forward descriptor of transport, we
used the Short-range Layered Atmospheric Model
(SLAM) which used the same archived surface observa-
tions, rawinsonde data, and global gridded NCEP/NCAR
reanalysis fields that were used as input to TCAL. SLAM
is a multiple layer, Gaussian puff, transport-dispersion
model. Within the model, continuous or intermittent
releases of gases or particulates are simulated by the
release of large numbers of puffs, which grow and
advect downwind based on the mean wind within the
transport layer. The mean transport layer is adjusted
based on spatially and temporally changing patterns of
the planetary boundary layer height (PBL). As the mixing
depth changes along the path of a puff, the puff may split
into multiple vertical levels, with each partition utilizing its
unique transport layer winds. SLAM can model the trans-
port of material based on a wide array of meteorological
wind datasets, including conventional surface and upper
air observations, global 2.5-, 1-, and 0.5-degree gridded
analyses and forecasts, as well as output from the
Regional Atmospheric Modeling System (RAMS; Pielke
et al. 1992) and the fifth Generation Mesoscale Model
(MM5; Grell et al. 1994). Based on the puffs’ advection,
dispersion, and vertical extent, SLAM calculates hourly
concentration estimates at user-selected locations at the
ground and aloft. Mass losses due to dry and wet depo-
sition as well as environmental decay can also be mod-
eled; however, we did not utilize those options for this
study.

SLAM was configured to model puffs emitted at
intervals of 60 minutes from a grid of 391 sources cover-
ing the western half of the United States. A depiction of
the grid along with the location of surface and rawin-
sonde observations used as input to SLAM is shown in
Figure 1. Wind vectors to determine transport were
recalculated every 60 minutes and puffs were tracked for
72 hours. In order to speed model execution, simulations
did not take into account winds above 2500 meters AGL,
and higher mixing heights were capped to that level.

3.2. SAMPLER DATA

Aerosol fines data for the Grand Canyon were
obtained from the Center for Air Pollution Impact and
Trend Analysis (CAPITA), School of Engineering, Wash-
ington University (SCENES Data). That data set consists

of daily gravimetric mass measurements of PM2.5 taken
from May, 1984 to September, 1989. For convenience,
we used a subset of this data: July, 1984 to April, 1988.
The seasonal variation of aerosol mass data is shown in
Figure 2.

These data were collected by an automated sam-
pler located at Hopi Point and operated by Desert
Research Institute for the SCENES program. Collection
time occurred at 1900 local time (Mountain Standard
Time, MST), and was presumed to be 24 hours in length,
terminating at the time of collection (Vasconcelos,
Macias & White, 1994).

3.3. BACKWARD TRAJECTORY FRAMEWORK:
PSCF AND CWT

The Potential Source Contribution Function (PSCF)
model is a widely used hybrid receptor model used for
inferring potential source locations. The PSCF approach
was originally developed by Ashbaugh et al. (1985), and
Malm et al (1986). It calculates conditional probabilities
associated with a geospatial grid which is overlaid onto
the region of interest. The grid must be large enough to
encompass suspected or known sources of the material
of interest as well as the single receptor location.
The calculation of PSCF factors is actually quite simple
in practice. If nij trajectory segment endpoint falls onto
the ij-th cell, the probability of this event Aij is given by:

P[Aij] = nij / N,  (1)
where N is the total number of segment endpoints sum-
marized over all cells in the calculational grid.

Figure 1. Locations of the surface (black dots) and
rawinsonde (white circles) sites used as input to the
SLAM gridded source simulations and TCAL.
Receptor location at Hopi Point is represented by the
red diamond.
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In the same ij-th cell, if there are mij endpoints that
correspond to all the trajectories that ended at the recep-
tor site during sampling periods with pollutant concentra-
tions higher than some pre-specified (presumably
significant) amount, then the probability of this event Bij
is:

P[Bij] = mij / N  (2)
The potential source contribution function (PSCF) is then
defined as a conditional probability:

PSCFij =  P[Bij] / P[Aij],  (3)
which is equal to the ratio mij / nij .

The PSCFij is then the conditional probability that an
air mass with specified material of interest concentra-
tions arrived at the receptor site after having passed
through (resided in) the ij-th cell. Cells for which high
PSCF values are calculated are the “potential” source
areas.

A version of the Potential Source Contribution Func-
tion (PSCF) model was obtained from P. Hopke of Clark-
son University and coded into FORTRAN. We used it to
map potential sources for airborne aerosols consisting of
particulate matter < 2.5 microns, PM2.5 (for a review of
the PSCF method, see Begum et al., 2005).

PSCF factors were then calculated for each of the
four seasons, 1985 through 1988, where the seasons
are defined according to the convention followed by Vas-
concelos (1999). Under this convention, the summer
season is defined as consisting of the months June, July,
and August. One implication of that choice is that a well
known climatological shift (the “Arizona Monsoon”) which
usually occurs in early July falls within season rather
than between seasons. That shift is the transition into the
southeastern monsoonal flow from the gulf of Mexico.
According to National Weather Service, the average date
of the onset of the monsoon is July 7 (NWS -- The Ari-
zona Monsoon). As a result, we might expect the PSCF
results for Summer to suffer some increased ambiguity
(i.e. a more widespread, ill-defined source region) due to
this climatic effect.

3.4. FORWARD TRAJECTORY FRAMEWORK: GFTR

In the forward-transport approach, the conditional
probability field is estimated from predicted “catch” of air-
borne particulates at a receptor collected from hypotheti-
cal plumes originating from each point of a grid of
putative sources. In our case, the predicted airborne
concentrations are calculated by the transport and dis-
persion model SLAM, which is a Lagrangian Gaussian-

Figure 2. Measured quantity of PM2.5 in samples collected at Hopi Point from May 1984 to August 1989.
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puff and trajectory model that can ingest a wide variety
of meteorological data and formats.

To sharpen these ideas, we will specify more explic-
itly what is meant by the predicted “catch” from a grid-
point source. To this end, suppose aerosol “puffs” of unit
mass emanate at regularly spaced time intervals com-
prising the set R = {rk | k=1,2,…,K} from a hypothetical
source at grid coordinates (i, j).  Let

 (4)

denote the predicted effluent concentration at receptor
location x at time t due to the unit-mass puff released at
(earlier) time rk from grid-point source (i, j). Then, if ϕ(t)

denotes the throughput of the sampler (m3/hr) during
sampling period S=[a, b], then

 (5)

represents the predicted “catch” by a sampler at location
x during sampling period S from the hypothetical
releases at grid-point (i, j).

For each candidate grid-point source, we seek to
devise a statistic that estimates the likelihood that trans-
port of material from that source will result in “interesting”
samples. An “interesting” sample is one in which we
detect the effluent of interest in some reliable, reproduc-
ible way and for which we assess the concentration to be
elevated with respect to ambient background levels. Our
general strategy then would be to devise methods that
will highlight sources that have higher than expected val-
ues of the statistic or that are correlated with “interesting”
samples to a degree not adequately explained by ran-
dom chance and mere climatology.

To that end, we define the Grid-point Forward Trans-
port Ratio (GFTR) for each grid-point. For a given sam-
pling campaign at a given receptor location, GFTR is,
notionally, the total estimated catch during “interesting”
samples divided by the total estimated catch during all
samples. More specifically, let

 (6)

denote a succession of sampling periods at the subject
receptor location x, and let Ci,j(x,sn) denote the predicted
“catch” by a sampler at location x during sampling period
sn due to “steady continuous” unit releases from a hypo-
thetical source at grid point (i, j). If we let

,  (7)

we can then define

.  (8)

For some grid cells, the raw GFTR values may be
supported by a relatively small number of samples; i.e., it
is possible to calculate a GFTR score for a given grid cell
when only one or a few samples register nonzero “catch”
from that grid cell. If all or most of those samples are
“interesting” according to the pre-selected threshold, that
GFTR value may be quite high -- even unity -- despite
the fact that the putative “source” at that grid cell
“explains” only a small fraction of the “interesting” collec-
tions. To prevent these GFTR values with small support
from dominating the analysis, we apply an adjustment to
each GFTR value equal to the fraction of all “interesting”
samples (within season) that have nonzero “catch” from
the given grid cell.

3.5. CRITERIA FOR IDENTIFYING “INTERESTING”
SAMPLES

Both the PSCF and the GFTR techniques require
that some subset of the samples be designated as signif-
icant (or “interesting”) based on the measured content of
the collection. A typical approach is to set a criterion
value equal to some pre-selected quantile (e.g. the 0.75
quantile) among the measured values for the pollution
content across the sample record.

For our seasonal analyses, each season (Spring,
Summer, Fall, Winter) is represented by the data aggre-
gated across four years of the SCENES project. In each
of these four subsets of the total sample record, we have

used criterion values set at the within-season 75th per-
centile. The sample sizes and criterion values for these
four groups are shown in Table 1.

κi j r k, , x t,( )

Ci j, x S,( ) κi j r k, , x t,( )
r R∈
∑ ϕ t( ) td

a

a

∫=

S sn an bn[ , ] n 1 2 … N, , ,= ={ }=

I n( )
1 if snis an interesting sample,

0 otherwise,



=

Table 1: Seasonal Criterion Values for Identification
of “Interesting” Samples and Corresponding Sample
Sizes

Season
Total # of
Samples

Mean
PM2.5

(µg/m3)

0.75 Quantile
Criterion

Value (µg/m3)

Summer 298 3.996 4.725

Fall 310 2.792 3.515

Winter 324 1.603 2.029

Spring 283 3.162 4.039

GFTR i j x S,,( )

Ci j, x sn,( ) I n( )⋅[ ]
n 1=

N

∑

Ci j, x sn,( )
n 1=

N

∑
--------------------------------------------------------=
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3.6. CONFIDENCE INTERVALS USING BOOTSTRAP

To obtain confidence interval estimates of PSCF, tra-
jectories within each of the four seasons were randomly
sampled with replacement using the total number of tra-
jectories as the sample size. The PSCF statistic was
calculated for each resampling of back-trajectories. This
process was repeated 1000 times, and the 2.5 and 97.5
percentiles of the distribution of PSCF statistics were
used to estimate the bounds of 95% confidence inter-
vals.

For each season and potential source, material col-
lection days were sampled with replacement using the
total number of collection days as the sample size. The
GFTR statistic was calculated, and this process was
repeated 1000 times. The 2.5 and 97.5 percentiles of
the distribution of GFTR statistics were used to estimate
the bounds of  95% confidence intervals.

4. RESULTS

4.1. PSCF Results

Using the back-trajectories described in Section 3.1
along with the criterion values specified in Table 1 for
identifying “interesting” samples, PSCF analysis was
performed for each season across the one-degree reso-
lution grid that was depicted earlier in Figure 1. The
point-estimates of PSCF for each grid cell through which
back trajectories crossed are shown in Figure 3. Mean-
while, the lower bounds of the bootstrap 95% confidence
interval for PSCF are pictured in Figure 4.

The source regions suggested by the raw PSCF and
the bootstrap lower confidence bound (PSCF-LCB),
respectively, in each season are essentially similar. The
PSCF-LCB is intended, of course, to highlight grid cells
in which we can have greater confidence that the PSCF
score is relatively high. [Note: the truncation of the east-
ernmost cells of the grid in the PSCF-LCB charts is due
to an inadvertent misspecification of the grid.]

4.2. GFTR Results

Using the forward-trajectory framework for hybrid
receptor modeling described in 3.4 and the criterion val-
ues specified in Table 1, GFTR values were calculated
for each cell in the grid. The (point-estimate) GFTR val-
ues shown in Figure 5 have been normalized relative to
the maximum score within each season.

In Figure 6, we see the lower bounds of 95% confi-
dence intervals on GFTR (GFTR-LCB) obtained with the
bootstrap analysis. Again, scores have been normalized
relative to the maximum score within each season.

We readily observe that there is comparatively little
difference between the GFTR and GFTR-LCB estimates.

This is partly attributable to the adjustments (described
earlier in Section 3.4) applied to GFTR values according
to the fraction of “interesting” samples to which the hypo-
thetical “source” at that grid point could have contributed
fine particulates: The adjustments have already down-
weighted the GFTR values associated with broad uncer-
tainty.

5. DISCUSSION

We observe that the source regions suggested by
GFTR analysis differ somewhat from the corresponding
source regions suggested by PSCF analysis. Agree-

Figure 3. PSCF analysis by season for potential
sources of PM2.5 in samples collected at Hopi Point,
AZ during SCENES.
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ment between the PSCF and the GFTR source-region
estimates appears to be best in the fall with both tech-
niques suggesting sources to the northeast and south-
east and, with lesser agreement, both techniques
imputing (south-)westward sources. We note that differ-
ent transport and dispersion models were used in our
study for the forward and backward transport descrip-
tors; hence, differences between the results of these two
source-location approaches include differences in T&D
model skill and cannot be used to argue superiority of
one approach over the other.

Seasonal variations were clearly evidenced in the
results of both techniques. Comparing the grid cells
highlighted by our analyses with the major emission
sources geo-referenced by Mueller, et al. (1986), the
GFTR and PSCF graphs show that many different
sources probably contributed to samples containing ele-
vated levels of fine particulate matter at the Hopi Point
monitor. The facilities listed by Mueller, et al. (1986)
include numerous smelters and power plants located in
Arizona, numerous power plants scattered around Cali-
fornia, New Mexico, and Utah as well as smelters in Mex-

Figure 4. Lower bounds of 95% confidence intervals
on PSCF, by season, for potential sources of PM2.5
in samples collected at Hopi Point, AZ during
SCENES.
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Figure 5. Gridpoint Forward Transport Ratio (GFTR)
analysis by season for potential sources of PM2.5 in
samples collected at Hopi Point, AZ during SCENES.
GFTR scores are normalized to the maximum value
within season.
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ico. Their chart does not extend beyond Nevada, Utah
and Colorado in the North and also cuts off a portion of
New Mexico and almost all of Texas to the East; there-
fore, we can only speculate as to likely sources corre-
sponding to the high-scoring grid cells from our analysis
that lie beyond these states. Major urban areas can obvi-
ously be potential sources due to automobile and other
emissions.

Comparisons with published results by Vasconcelos
(1999) are limited to the spring and fall because those
are the only seasonal charts Vasconcelos included in his

paper. The spring chart in Vasconcelos’ paper shows
the most significant potential sources making a path
from western Arizona to Southern California with other
significant points scattered around New Mexico, Texas,
Utah and Wyoming. The fall chart in Vasconcelos’ paper
shows a swath of significant potential sources diagonally
through Arizona into southern New Mexico, with other
scattered points in southern California and Mexico (Vas-
concelos, 1999).

Our PSCF results for the fall season shows good
general agreement with Vasconcelos (1999) while the
GFTR chart for fall shows significant results in Utah
along with Arizona, New Mexico and Texas. Utah has a
number of coal-fired power plants that may account for
high-scoring cells in the GFTR plot. We note that the
adjusted GFTR chart, which gives far greater weight to
grid cells exhibiting more persistent correlation with the
“interesting” samples confines a lot of the significant
results in Utah. This may partially explain the particular
emphasis that GFTR placed on grid cells corresponding
to major urban areas of Southern California owing to the
presumed persistence of fine particulate production
there.

The PSCF Spring chart puts more significance in
New Mexico, Wyoming and Mexico instead of Arizona
and Southern California. The GFTR chart also puts
more emphasis on the states east of the receptor. We
note that the adjusted GFTR agrees very well with Vas-
concelos’ results (1999).

In his article, Vasconcelos does mention that the
winter showed influences from the south and southwest
of the receptor site – a finding in essential agreement
with our GFTR results.

6. SUMMARY

The development of a forward-transport descriptor
methodology (namely, GFTR) for hybrid receptor model-
ing provides complementary methodologies for source
location. An inherent advantage to having multiple
approaches is that coherency among the estimates
enhances confidence in the accuracy of the analysis and
enhances the robustness of the capability. Meanwhile,
disagreements among these approaches can illuminate
latent assumptions in the analysis and provide useful
insight.

The forward-transport approach described herein
appears to have given results more consistent with
benchmark published results. Our forward-transport
approach included an adjustment whose effect is to
down-weight potential source locations whose possible
contributions of effluent are confined to a small fraction
of the total number of high-concentration samples. This
adjustment consequently assigns relatively higher

Figure 6. Lower bounds of 95% confidence intervals
on GFTR, by season, for potential sources of PM2.5
in samples collected at Hopi Point, AZ during
SCENES. GFTR scores are normalized to the
maximum value within season.
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weight to grid points that are more consistently imputed
as possible sources for high-concentration samples.

The ability to assign a (conditional) probabilistic
interpretation to the spatial statistic of either technique
(PSCF or GFTR) opens possibilities for defensible
assessments of statistical significance and confidence
interval estimation.

Numerous ideas for future methodological enhance-
ments have already been contemplated. Those plans
include performing studies to obtain a better understand-
ing of for which types of scenarios/contexts each method
is best suited.
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