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1.Introduction 
    In the past half century, tremendous progress has 
been made in numerical prediction of storm surge 
(Jelesnianski et al., 1992; Xie et al., 2004; Peng et al., 
2005) and coastal ocean circulation (Blumberg and 
Mellor, 1987).  Although improvements have been 
made, substantial prediction errors still exist (Houston 
et al., 1999).  Numerical ocean predictions are never 
exact solutions of the real world ocean.  Instead they 
are only an approximation of the real ocean both in 
terms of dynamics and physics.  The errors or 
uncertainties of model prediction come from two main 
sources: 1) dynamical simplifications and physical 
parameterizations; and 2) initial and boundary 
conditions. Therefore, oceanic prediction can be 
improved either by improving the dynamical 
approximations and physical parameterizations or by 
improving initial and boundary conditions. Significant 
improvements have already been made in modeling 
the ocean dynamics and physics. With the 
development of large ocean observing systems and 
remote sensing techniques, more and more oceanic 
data are becoming available. This provides a 
promising prospect for improving the model initial 
conditions through data assimilation. As a result, data 
assimilation has become widely used in meteorological 
and oceanographic predictions in recent years.  
      Among all data assimilation methods, 4-
dimensional variational data assimilation (4D-Var) is 
one of the most effective and powerful approaches 
developed over the past two decades (Le Dimet and 
Talagrand 1986; Courtier et al. 1994). It is an 
advanced data assimilation method which involves the 
adjoint technique and has the advantage of directly 
assimilating various observations distributed in time 
and space into the numerical model while maintaining 
dynamical and physical consistency with the model. 
Thus, 4D-Var has been widely applied in 
meteorological and oceanographic data assimilation, 
sensitivity studies, and parameter estimation.  
       While the adjoint approach has been applied in 
global ocean analyses and prediction using real 
observations and realistic Ocean General Circulation 
Models (OGCM) (e.g., Martel and Wunsch 1993; 
Oldenborgh et al. 1999; Bonekamp et al. 2001; 
Weaver et al. 2003; Köhl and Stammer 2004), the 
application of the adjoint approach in the coastal 
short-range ocean forecasting is still more theoretical 

than practical using very simple ocean models or 
psuedo-observation data. It is worth noting some 
pioneering studies in this area, such as those of 
Bennett and McIntosh (1982), Yu and O’Brien (1991, 
1992), Das and Lardner (1991), Seiler (1993),Lu and 
Hsieh (1997, 1998a,b), Heemink et al. (2002), and 
Zhang et al. (2002 and 2003). The results of all of 
these studies have indicated that the adjoint 
variational approach is quite effective and robust in 
regional ocean data assimilation, sensitivity studies 
and parameter estimation and may benefit real-time 
prediction of oceanic circulation and sea state. The 
studies mentioned above, however, mainly focused 
on investigating the feasibility of the adjoint method 
in ocean research and forecasting under simplified 
dynamics and numerics. The models used in these 
studies were simplified either physically (e.g., quasi-
geostrophic approximation, shallow water 
approximation, or reduced gravity approximation) or 
numerically (e.g., one-dimensional or two-
dimensional assumptions) due to computational 
considerations. The questions are:  
1) With the advent of more powerful supercomputing 
capabilities, is it practical to develop a 4D-Var 
algorithm for three-dimensional primitive equation 
coastal ocean models now or must we still resort to 
physical or numerical simplification to reduce 
computing cost?  
2) What is the best strategy for data assimilation, as 
more and more coastal observing systems are 
deployed, various observations from moorings, 
buoys, ships, coastal radars and satellites become 
available in near real-time? Should we assimilate all 
available data simultaneously or identify a small 
subset of data sets which are most effective?  
3) Storm surge forecasting often relies on a cold start 
of the numerical model (i.e., without initialization). Is 
this an acceptable practice? How important or 
effective is initialization in storm surge forecasting?  
     To answer these questions, an adjoint model of 
the three-dimensional, nonlinear primitive equation, 
Princeton Ocean Model (POM) (Mellor 2003; 
Blumberg and Mellor 1987) is developed. A 4D-Var 
algorithm based on the POM and its adjoint model is 
configured as the first step of our goal of performing 
real-time data assimilation and operational oceanic 
nowcasting/forecasting using the adjoint variational 
approach. Experiments with pseudo-observations 
generated by a different version of POM with higher 



resolution are conducted to verify and evaluate the 
developed 4D-Var algorithm. 

 
2.  The nonlinear POM and its tangent linear and 

adjoint model development 
            The Princeton Ocean Model (POM) 2002 version 

(referred to as pom2k) is used for the forward 
prediction model in this study. The POM is a three-
dimensional, primitive equation ocean model which 
includes a simplified version of the level 2.5 Mellor and 
Yamada turbulent closure scheme (Mellor and 
Yamada, 1982, hereafter denoted as MY82, details 
can be found in Mellor, 1989). In this study, radiation 
open boundary conditions are applied to seaward 
boundaries.   The bottom terrain-following, sigma 
coordinate equations of the POM as well as a full 
description of the POM can be found in Blumberg and 
Mellor (1987) and Mellor (2003).  The governing 
equations of the POM can be written in a general form 
as, 
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where x  represents the vectors of model state 
variables, which includes current velocity U and V, 
temperature T, salinity S, surface elevation η , and 

turbulence quantities 2q  and lq 2 . 0x  and )(ty  

represent the initial condition (IC) at initial time 0t  and 

lateral boundary condition on Γ , respectively. 
     The TLM of the POM can be obtained by linearizing 
the POM forecast model (1) about a nonlinear model 
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where prime represents perturbations of the 
corresponding variables. The adjoint model 
corresponding to (2) is  
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where x̂  represents the vector of adjoint variables and 

Rt   the ending time of forward integration. The 
negative sign in the left-hand-side of (3a) indicates that 
the adjoint model integrates backward in time.  
   Considering the complication of the time-splitting 
scheme and the high nonlinear feature of turbulence 

closure in POM, the TLM and adjoint model of POM 
are developed directly from the POM forward model 
code by hand-coding. As pointed out by the ROMS 
TLM/adjoint model developing group (Moore et al, 
2004), hand-coding allows a better understanding 
and control of the code structure of the resulting 
models.                       

 
3. Experiment design 
      To verify and evaluate the performance of the 
4D-Var algorithm based on the POM, we apply the 
algorithm to a storm surge case along the United 
States East Coast during hurricane Hugo, Sept. 21-
22, 1989. The “pseudo-observations” generated by a 
high resolution model which is described in detail in 
Xie et al. (2004) and Peng et al. (2004, 2005) are 
used.  Using “pseudo-observations” in data 
assimilation studies has the advantage of providing a 
full suite of balanced data sets which can be 
assimilated into the forecast model (Zhang et al., 
2002, 2003). In this study, the same wind field is 
used to generate the “pseudo-observations” and for 
the storm surge forecast, so the uncertainty 
associated with the wind forcing is minimized. This 
allows us to focus on the effect of determining initial 
conditions on storm surge.  

The  numerical experiments are designed as:  
NoDA: 9-h model run with original IC from a 12-h 
spin-up (control run);  
DA-1:  9-h model run with optimal IC from 4D-Var 
of water level only;  
DA-2:  9-h model run with optimal IC from 4D-Var 
of both water level and surface currents; 

   The horizontal resolution for the four experiments is 
2’ x2’ (about 3.1x3.7 km) with a total number of grid 
points of 136x106 and 3 vertical sigma levels. The 
time step is 3 minutes. Inflow boundary conditions 
are used for water level, radiation boundary condition 
for 3-D currents, and upstream advection boundary 
conditions for temperature, salinity and turbulent 
kinetic energy. In order to generate a large error in 
the control run so that improvements by 4D-Var can 
be seen clearly, a fixed boundary condition is applied 
to the vertically-averaged currents. The wind stress 
are calculated by using the Holland hurricane wind 
model (Holland, 1980) and updated every 10 
minutes. The control run and the 4D-Var experiments 
started at 21Z Sept. 21. A 12-h spin-up is run and the 
output from the spin-up is used as the initial condition 
of the NoDA experiment as well as the first guess 
field for the 4D-Var experiments (DA-1 and DA-2 ).  
      The control variables in the 4D-Var experiments 
are water level, current (including 3-D current and 2-
D vertically integrated current) field, temperature, 
salinity, and bottom stress. The pseudo-observations 
of water level and surface currents on each ocean 
grid point are generated by a different version of the 
POM running at double horizontal resolution (or half 
grid size) and with an inundation/drying scheme (Xie 
et al. 2004) which enables the coastal boundary to 
be time-dependent. A 3-h data assimilation window 
from 21Z Sept. 21 to 00Z Sept. 22 is set for the 4D-



Var experiments with a 10-minute sampling 
frequency. The cost function is defined as: 
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                                                                               (4) 
where 0x  represents the vector of control variables at 

the initial time 0t , and bx  represents their background 

values.  ir ,P  and obs
ir ,P denote the model simulated 

values and the observations of water level or surface 
currents, respectively, at location i and time level r. N is 
the number of grid points over the ocean and M the 
number of time levels of observations.  B and R are 
the error covariance for the background vector and the 
observations, respectively. α  is a weighting 
parameter which makes the magnitudes of each 
observation term of (4) in balance.  

4. Results 
    Fig. 1 shows the evolution of the total cost function 
and each of its terms with respect to the number of 
iterations for Experiment DA-1. The evolution of the 
total cost function is similar to that of the observation 
term, which decreases rapidly during the first 10 
iterations and then varies slowly.  The values of the 
background term, which measures the difference 
between the background field and the initial condition 
at each iteration, is zero at the 0th iteration and 
increases with the number of iterations as the initial 
conditions are adjusted to fit the model trajectory to the 
“observations". The evolution of the cost function with 
respect to the number of iterations for DA-2 is similar 
to that for DA-1.  
 

 
 
       Fig. 1 The evolution of each term of the cost function 
            with respect to the number of iterations for DA-1. 
       
      Fig. 2 shows the water level fields from the 
“observations” and each experiment at 01z Sept. 22 
which is out of the assimilation window. Compared to 
the “observations” (Fig. 2a), the control run without data 
assimilation (NoDA, Fig. 2b) under-predicts the water 
level along much of the coastline north of the Georgia- 

 
Fig. 2 The water level fields at 00Z Sept. 22 from (a) 
pseudo-observations; (b) NoDA; (c) DA-1 and (d) DA-2 (line 
AB and the numbers along it are for figs 4-5)   (unit: m). 
 
South Carolina border (32ºN). After assimilating the 
water level (Fig. 2c), the height of the water level 
over this area increases and is closer to the 
“observations”.  Assimilating both water level and 
surface currents (Fig. 2d) has similar results as 
assimilating only water level. Fig. 3 shows the time 
series (starting at 21Z Sept. 21) of the root mean 
square error (RMSE) of water level averaged over all 
ocean grid points for each experiment with respect to 
the “observations” of water level. The model 
forecasting errors are reduced significantly by data 
assimilation within and a few hours beyond the 
assimilation window, with DA-2 slightly outperforming 
DA-1.  However, the effect of data assimilation 
outside the assimilation window decreases as 
forecast time increases. 
 

 
Fig. 3 Time series of the root mean square error  (RMSE) of 
water level averaged over all ocean grid points for each 
experiment with respect to the pseudo-observations of 
water level starting from 21Z Sept. 21 to 05Z Sept. 22 (unit: 
m). 
 
   The height of the peak storm surge along the coast 
is often the quantity of interest during the threat of a 
tropical cyclone. Fig. 4 shows the peak surge at 17 
locations evenly distributed along a line parallel to  



 
Fig. 4 Maximum height of water level along line AB shown in 
Fig. 2d for the pseudo-observations and each experiment (the 
number 1 in X-axis corresponding to location A and 17 
corresponding to B. unit: m). 
 
the coast (line AB in Fig. 2d) for the “observations” and 
each experiment. It indicates that data assimilation 
produces significant improvements in the estimation of 
peak surge along the southern section of line AB, but 
no improvement on the northern section of the line. It is 
worth noting that although the storm surge predicted 
by the stand-alone POM without data assimilation 
produced large errors north of 32ºN as shown in Fig. 2, 
it is able to capture the peak surge that occurred near 
location 12. As a result, the improvement in peak surge 
is small near location 12. The large error in peak surge 
that occurred near the northern boundary (locations 
15-17) is not effectively reduced by data assimilation. 
The error in this region is apparently less sensitive to 
initial conditions. This could be the result of model 
deficiencies, such as the lower resolution used, the 
lack of an inundation/drying scheme, and the fixed 
lateral open boundary conditions for the vertically-
averaged 2-D current. The time series of water level of 
4 points (7-10) located in the middle section of the line  
 

 
Fig. 5 The evolution of water level over 4 selected points (6-9) 
located on the middle section of line AB (Fig. 2d) for pseudo-
observations, NoDA and DA-2, starting at 00z Sept. 22 (unit: 
m). 

AB for “observations”, NoDA and DA-2 are shown in  
Fig. 5a-d.  The figures show that data assimilation leads 
to significant improvements in storm surge prediction 
during the simulation period. 
  The surface current fields (figures omitted) show 
that assimilating only water level or assimilating both 
water level and surface currents intensifies the vortex 
and produced onshore currents which leads to an 
increase in the water level along the coast. It is 
interesting to note that, although assimilating both 
water level and surface currents have larger impacts 
on the model simulation of surface currents, 
assimilating water level alone can produce a 
comparable improvement in storm surge forecasting. 
Because the 4D-Var approach adjusts all control 
model variables simultaneously through the model 
dynamics and physics when assimilating one or more 
types of observations, assimilating water level leads 
to significant impacts on the surface currents.  
 
 5. Summary and discussion 
     In this study, the tangent linear model and the 
adjoint model of the 3-D primitive equation coastal 
ocean circulation model (POM) are developed. 
Experiments for a storm surge case are conducted 
on a single Linux-based 2.8GHz-3.2GHz Xeon 
processor to evaluate the potential application of a 
4D-Var algorithm based on the POM adjoint model in 
storm surge forecasting by assimilating pseudo-
observations of water level and surface currents into 
the model. For a 12-hour forecast with a 3-h data 
assimilation window (with 10 iterations of 
minimization) with the setup used in this study, it 
requires approximately half an hour of CPU time. 
Thus, real-time ocean forecasting using a three-
dimensional primitive equation model with 4D-Var 
data assimilation is not beyond reach. When a multi-
processor parallel computer cluster is used, higher 
resolutions can be achieved to meet the 
requirements of today’s operational ocean 
forecasting needs.  

The experimental results demonstrate that the 
4D-Var data assimilation based on the developed 
POM adjoint  model  is able to find an “optimal” initial 
condition for the storm surge forecasting, with the 
values of the cost function which measures the 
difference between the model and “observations” 
reducing rapidly during the first 10 minimization 
iterations. Improvements on water level prediction 
are obtained both within and several hours beyond 
the assimilation window by assimilating water level 
“observations” alone or assimilating both water level 
and surface current “observations”. The added 
benefit of assimilating both water level and surface 
currents is relatively small since water level and 
current fields are adjusted in dynamical and physical 
consistency with the constraint of the model control 
equations and the cost function. 
      For the storm surge case studied in this paper, 
notable improvements are obtained by finding an 
“optimal” initial condition through data assimilation. 
However, the improvements decrease rapidly in time 



beyond the assimilation window. The effect of data 
assimilation only lasts for several hours beyond the 
data assimilation window. Therefore, only changing 
the initial condition through data assimilation does 
not ensure an accurate forecast of storm surge with a 
long lead time.  
    Note that the same Holland wind model is used to 
generate the hurricane winds for the prediction model 
as well as the model which generates the “pseudo-
observations”. Thus, the forecast errors are the result 
of the differences between the two models. The data-
generation model is run at higher resolution and also 
includes an inundation scheme, whereas the forecast 
model is configured at a lower resolution and does not 
couple to an inundation model. Thus, the results 
presented above show that forecast errors due to 
deficiencies in model physics or numerics can not 
always be effectively corrected through improving 
initial conditions alone.  
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